Goto

Collaborating Authors

Reduction of fuzzy automata by means of fuzzy quasi-orders

arXiv.org Artificial Intelligence

In our recent paper we have established close relationships between state reduction of a fuzzy recognizer and resolution of a particular system of fuzzy relation equations. In that paper we have also studied reductions by means of those solutions which are fuzzy equivalences. In this paper we will see that in some cases better reductions can be obtained using the solutions of this system that are fuzzy quasi-orders. Generally, fuzzy quasi-orders and fuzzy equivalences are equally good in the state reduction, but we show that right and left invariant fuzzy quasi-orders give better reductions than right and left invariant fuzzy equivalences. We also show that alternate reductions by means of fuzzy quasi-orders give better results than alternate reductions by means of fuzzy equivalences. Furthermore we study a more general type of fuzzy quasi-orders, weakly right and left invariant ones, and we show that they are closely related to determinization of fuzzy recognizers. We also demonstrate some applications of weakly left invariant fuzzy quasi-orders in conflict analysis of fuzzy discrete event systems.


Shannon entropy for intuitionistic fuzzy information

arXiv.org Artificial Intelligence

The paper presents an extension of Shannon fuzzy entropy for intuitionistic fuzzy one. Firstly, we presented a new formula for calculating the distance and similarity of intuitionistic fuzzy information. Then, we constructed measures for information features like score, certainty and uncertainty. Also, a new concept was introduced, namely escort fuzzy information. Then, using the escort fuzzy information, Shannon's formula for intuitionistic fuzzy information was obtained. It should be underlined that Shannon's entropy for intuitionistic fuzzy information verifies the four defining conditions of intuitionistic fuzzy uncertainty. The measures of its two components were also identified: fuzziness (ambiguity) and incompleteness (ignorance).


Bipolar Fuzzy Soft sets and its applications in decision making problem

arXiv.org Artificial Intelligence

In this article, we combine the concept of a bipolar fuzzy set and a soft set. We introduce the notion of bipolar fuzzy soft set and study fundamental properties. We study basic operations on bipolar fuzzy soft set. We define exdended union, intersection of two bipolar fuzzy soft set. We also give an application of bipolar fuzzy soft set into decision making problem. We give a general algorithm to solve decision making problems by using bipolar fuzzy soft set.


Shannon Entropy for Neutrosophic Information

arXiv.org Artificial Intelligence

The paper presents an extension of Shannon entropy for neutrosophic information. This extension uses a new formula for distance between two neutrosophic triplets. In addition, the obtained results are particularized for bifuzzy, intuitionistic and paraconsistent fuzzy information.


Unsupervised Fuzzy eIX: Evolving Internal-eXternal Fuzzy Clustering

arXiv.org Artificial Intelligence

Time-varying classifiers, namely, evolving classifiers, play an important role in a scenario in which information is available as a never-ending online data stream. We present a new unsupervised learning method for numerical data called evolving Internal-eXternal Fuzzy clustering method (Fuzzy eIX). We develop the notion of double-boundary fuzzy granules and elaborate on its implications. Type 1 and type 2 fuzzy inference systems can be obtained from the projection of Fuzzy eIX granules. We perform the principle of the balanced information granularity within Fuzzy eIX classifiers to achieve a higher level of model understandability. Internal and external granules are updated from a numerical data stream at the same time that the global granular structure of the classifier is autonomously evolved. A synthetic nonstationary problem called Rotation of Twin Gaussians shows the behavior of the classifier. The Fuzzy eIX classifier could keep up with its accuracy in a scenario in which offline-trained classifiers would clearly have their accuracy drastically dropped.