AAAI Conferences

Hierarchical classification is a variant of multidimensional classification where the classes are arranged in a hierarchy and the objective is to predict a class, or set of classes, according to a taxonomy. Different alternatives have been proposed for hierarchical classification, including local and global approaches. Local approaches are prone to suffer the inconsistency problem, while the global approaches tend to produce more complex models. In this paper, we propose a hybrid globallocal approach inspired on multidimensional classification. It starts by building a local multi-class classifier per each parent node in the hierarchy. In the classification phase all the local classifiers are applied simultaneously to each instance resulting in a most probable class for each classifier. A set of consistent classes are obtained, according to the hierarchy, based on three novel alternatives. The proposed method was tested on three different hierarchical classification data sets and was compared against state-of-the-art methods, resulting in significantly superior performance to the traditional topdown techniques; with competitive results against more complex top-down classifier selection methods.


AAAI Conferences

This paper studies a top-k hierarchical classification problem. In top-k classification, one is allowed to make k predictions and no penalty is incurred if at least one of k predictions is correct. In hierarchical classification, classes form a structured hierarchy, and misclassification costs depend on the relation between the correct class and the incorrect class in the hierarchy. Despite that the fact that both top-k classification and hierarchical classification have gained increasing interests, the two problems have always been studied separately. In this paper, we define a top-k hierarchical loss function using a real world application. We provide the Bayes-optimal solution that minimizes the expected top-k hierarchical misclassification cost. Via numerical experiments, we show that our solution outperforms two baseline methods that address only one of the two issues.

Can any one tell me what is the difference between k-means classification and svm classification?


K-means is a clustering algorithm and not classification method. On the other hand, SVM is a classification method. We do clustering when we don't have class labels and perform classification when we have class labels. Clustering is a unsupervised learning technique and classification is a supervised learning technique. Therefore, comparing both of them are comparing apple and oranges.

Exploiting the potential of deep reinforcement learning for classification tasks in high-dimensional and unstructured data

arXiv.org Machine Learning

This paper presents a framework for efficiently learning feature selection policies which use less features to reach a high classification precision on large unstructured data. It uses a Deep Convolutional Autoencoder (DCAE) for learning compact feature spaces, in combination with recently-proposed Reinforcement Learning (RL) algorithms as Double DQN and Retrace.

Multi-borders classification

arXiv.org Machine Learning

The number of possible methods of generalizing binary classification to multi-class classification increases exponentially with the number of class labels. Often, the best method of doing so will be highly problem dependent. Here we present classification software in which the partitioning of multi-class classification problems into binary classification problems is specified using a recursive control language.