Goto

Collaborating Authors

A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach for Extreme Gradient Boosting

arXiv.org Machine Learning

It is already reported in the literature that the performance of a machine learning algorithm is greatly impacted by performing proper Hyper-Parameter optimization. One of the ways to perform Hyper-Parameter optimization is by manual search but that is time consuming. Some of the common approaches for performing Hyper-Parameter optimization are Grid search Random search and Bayesian optimization using Hyperopt. In this paper, we propose a brand new approach for hyperparameter improvement i.e. Randomized-Hyperopt and then tune the hyperparameters of the XGBoost i.e. the Extreme Gradient Boosting algorithm on ten datasets by applying Random search, Randomized-Hyperopt, Hyperopt and Grid Search. The performances of each of these four techniques were compared by taking both the prediction accuracy and the execution time into consideration. We find that the Randomized-Hyperopt performs better than the other three conventional methods for hyper-paramter optimization of XGBoost.


HyperOpt for Automated Machine Learning With Scikit-Learn

#artificialintelligence

Automated Machine Learning (AutoML) refers to techniques for automatically discovering well-performing models for predictive modeling tasks with very little user involvement. HyperOpt is an open-source library for large scale AutoML and HyperOpt-Sklearn is a wrapper for HyperOpt that supports AutoML with HyperOpt for the popular Scikit-Learn machine learning library, including the suite of data preparation transforms and classification and regression algorithms. In this tutorial, you will discover how to use HyperOpt for automatic machine learning with Scikit-Learn in Python. HyperOpt for Automated Machine Learning With Scikit-Learn Photo by Neil Williamson, some rights reserved. HyperOpt is an open-source Python library for Bayesian optimization developed by James Bergstra.


Hyperparameter Optimization Techniques for Data Science Hackathons

#artificialintelligence

For the python code, I used the Iris dataset which is available within the Scikit-learn package. It is a very small dataset (150 rows only) with a multiclass classification problem. As we are mostly focussing on hyperparameter tuning, I have not performed the EDA(exploratory data analysis) or feature engineering part and directly jumped into the model-building. I used the XGBoostClssifier algorithm for the model-building to classify the target variables. Then, we pass predefined values for hyperparameters to the GridSearchCV function.


Automated Machine Learning Hyperparameter Tuning in Python - DataScienceCentral.com

#artificialintelligence

Tuning machine learning hyperparameters is a tedious yet crucial task, as the performance of an algorithm can be highly dependent on the choice of hyperparameters. Manual tuning takes time away from important steps of the machine learning pipeline like feature engineering and interpreting results. Grid and random search are hands-off, but require long run times because they waste time evaluating unpromising areas of the search space. Increasingly, hyperparameter tuning is done by automated methods that aim to find optimal hyperparameters in less time using an informed search with no manual effort necessary beyond the initial set-up. Bayesian optimization, a model-based method for finding the minimum of a function, has recently been applied to machine learning hyper parameter tuning, with results suggesting this approach can achieve better performance on the test set while requiring fewer iterations than random search.


ReinBo: Machine Learning pipeline search and configuration with Bayesian Optimization embedded Reinforcement Learning

arXiv.org Artificial Intelligence

Machine learning pipeline potentially consists of several stages of operations like data preprocessing, feature engineering and machine learning model training. Each operation has a set of hyper-parameters, which can become irrelevant for the pipeline when the operation is not selected. This gives rise to a hierarchical conditional hyper-parameter space. To optimize this mixed continuous and discrete conditional hierarchical hyper-parameter space, we propose an efficient pipeline search and configuration algorithm which combines the power of Reinforcement Learning and Bayesian Optimization. Empirical results show that our method performs favorably compared to state of the art methods like Auto-sklearn , TPOT, Tree Parzen Window, and Random Search.