Comparing Different Classification Machine Learning Models for an imbalanced dataset


A data set is called imbalanced if it contains many more samples from one class than from the rest of the classes. Data sets are unbalanced when at least one class is represented by only a small number of training examples (called the minority class) while other classes make up the majority. In this scenario, classifiers can have good accuracy on the majority class but very poor accuracy on the minority class(es) due to the influence that the larger majority class. The common example of such dataset is credit card fraud detection, where data points for fraud 1, are usually very less in comparison to fraud 0. There are many reasons why a dataset might be imbalanced: the category one is targeting might be very rare in the population, or the data might simply be difficult to collect. Let's solve the problem of an imbalanced dataset by working on one such dataset.

Building an Employee Churn Model in Python to Develop a Strategic Retention Plan


Employee turn-over (also known as "employee churn") is a costly problem for companies. The true cost of replacing an employee can often be quite large. A study by the Center for American Progress found that companies typically pay about one-fifth of an employee's salary to replace that employee, and the cost can significantly increase if executives or highest-paid employees are to be replaced. In other words, the cost of replacing employees for most employers remains significant. This is due to the amount of time spent to interview and find a replacement, sign-on bonuses, and the loss of productivity for several months while the new employee gets accustomed to the new role.

Machine Learning -- Multiclass Classification with Imbalanced Data-set


Classification problems having multiple classes with imbalanced dataset present a different challenge than a binary classification problem. The skewed distribution makes many conventional machine learning algorithms less effective, especially in predicting minority class examples. In order to do so, let us first understand the problem at hand and then discuss the ways to overcome those. The data set we will be using for this example is the famous "20 News groups" data set. The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups.

Glossary of Machine Learning Terms


ROC curves are widely used because they are relatively simple to understand and capture more than one aspect of the classification.

Benchmarking datasets for Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives Artificial Intelligence

Abstract--Machine Learning has been steadily gaining traction for its use in Anomaly-based Network Intrusion Detection Systems (A-NIDS). Research into this domain is frequently performed using the KDD CUP 99 dataset as a benchmark. Several studies question its usability while constructing a contemporary NIDS, due to the skewed response distribution, nonstationarity, and failure to incorporate modern attacks. In this paper, we compare the performance for KDD-99 alternatives when trained using classification models commonly found in literature: Neural Network, Support Vector Machine, Decision Tree, Random Forest, Naive Bayes and K-Means. Applying the SMOTE oversampling technique and random undersampling, we create a balanced version of NSL-KDD and prove that skewed target classes in KDD-99 and NSL-KDD hamper the efficacy of classifiers on minority classes (U2R and R2L), leading to possible security risks. We explore UNSW-NB15, a modern substitute to KDD-99 with greater uniformity of pattern distribution. We benchmark this dataset before and after SMOTE oversampling to observe the effect on minority performance. Our results indicate that classifiers trained on UNSW-NB15 match or better the Weighted F1-Score of those trained on NSL-KDD and KDD-99 in the binary case, thus advocating UNSW-NB15 as a modern substitute to these datasets. Network security is an ever-evolving discipline where new types of attacks manifest and must be mitigated on a daily basis.