MASON: A Model AgnoStic ObjectNess Framework Artificial Intelligence

This paper proposes a simple, yet very effective method to localize dominant foreground objects in an image, to pixel-level precision. The proposed method 'MASON' (Model-AgnoStic ObjectNess) uses a deep convolutional network to generate category-independent and model-agnostic heat maps for any image. The network is not explicitly trained for the task, and hence, can be used off-the-shelf in tandem with any other network or task. We show that this framework scales to a wide variety of images, and illustrate the effectiveness of MASON in three varied application contexts.

Scalable Object Detection using Deep Neural Networks Machine Learning

Deep convolutional neural networks have recently achieved state-of-the-art performance on a number of image recognition benchmarks, including the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2012). The winning model on the localization sub-task was a network that predicts a single bounding box and a confidence score for each object category in the image. Such a model captures the whole-image context around the objects but cannot handle multiple instances of the same object in the image without naively replicating the number of outputs for each instance. In this work, we propose a saliency-inspired neural network model for detection, which predicts a set of class-agnostic bounding boxes along with a single score for each box, corresponding to its likelihood of containing any object of interest. The model naturally handles a variable number of instances for each class and allows for cross-class generalization at the highest levels of the network. We are able to obtain competitive recognition performance on VOC2007 and ILSVRC2012, while using only the top few predicted locations in each image and a small number of neural network evaluations.

How to Perform Object Detection With YOLOv3 in Keras


Object detection is a task in computer vision that involves identifying the presence, location, and type of one or more objects in a given photograph. It is a challenging problem that involves building upon methods for object recognition (e.g. In recent years, deep learning techniques are achieving state-of-the-art results for object detection, such as on standard benchmark datasets and in computer vision competitions. Notable is the "You Only Look Once," or YOLO, family of Convolutional Neural Networks that achieve near state-of-the-art results with a single end-to-end model that can perform object detection in real-time. In this tutorial, you will discover how to develop a YOLOv3 model for object detection on new photographs.

Learning to Segment Object Candidates

Neural Information Processing Systems

Recent object detection systems rely on two critical steps: (1) a set of object proposals is predicted as efficiently as possible, and (2) this set of candidate proposals is then passed to an object classifier. Such approaches have been shown they can be fast, while achieving the state of the art in detection performance. In this paper, we propose a new way to generate object proposals, introducing an approach based on a discriminative convolutional network. Our model is trained jointly with two objectives: given an image patch, the first part of the system outputs a class-agnostic segmentation mask, while the second part of the system outputs the likelihood of the patch being centered on a full object. At test time, the model is efficiently applied on the whole test image and generates a set of segmentation masks, each of them being assigned with a corresponding object likelihood score. We show that our model yields significant improvements over state-of-the-art object proposal algorithms. In particular, compared to previous approaches, our model obtains substantially higher object recall using fewer proposals. We also show that our model is able to generalize to unseen categories it has not seen during training. Unlike all previous approaches for generating object masks, we do not rely on edges, superpixels, or any other form of low-level segmentation.

LSDA: Large Scale Detection through Adaptation

Neural Information Processing Systems

A major challenge in scaling object detection is the difficulty of obtaining labeled images for large numbers of categories. Recently, deep convolutional neural networks (CNNs) have emerged as clear winners on object classification benchmarks, in part due to training with 1.2M+ labeled classification images. Unfortunately, only a small fraction of those labels are available for the detection task. It is much cheaper and easier to collect large quantities of image-level labels from search engines than it is to collect detection data and label it with precise bounding boxes. In this paper, we propose Large Scale Detection through Adaptation (LSDA), an algorithm which learns the difference between the two tasks and transfers this knowledge to classifiers for categories without bounding box annotated data, turning them into detectors. Our method has the potential to enable detection for the tens of thousands of categories that lack bounding box annotations, yet have plenty of classification data. Evaluation on the ImageNet LSVRC-2013 detection challenge demonstrates the efficacy of our approach. This algorithm enables us to produce a >7.6K detector by using available classification data from leaf nodes in the ImageNet tree. We additionally demonstrate how to modify our architecture to produce a fast detector (running at 2fps for the 7.6K detector). Models and software are available at