A 2019 Guide to Object Detection


Object detection is a computer vision technique whose aim is to detect objects such as cars, buildings, and human beings, just to mention a few. The objects can generally be identified from either pictures or video feeds. Object detection has been applied widely in video surveillance, self-driving cars, and object/people tracking. In this piece, we'll look at the basics of object detection and review some of the most commonly-used algorithms and a few brand new approaches, as well. Object detection locates the presence of an object in an image and draws a bounding box around that object.

MASON: A Model AgnoStic ObjectNess Framework

arXiv.org Artificial Intelligence

This paper proposes a simple, yet very effective method to localize dominant foreground objects in an image, to pixel-level precision. The proposed method 'MASON' (Model-AgnoStic ObjectNess) uses a deep convolutional network to generate category-independent and model-agnostic heat maps for any image. The network is not explicitly trained for the task, and hence, can be used off-the-shelf in tandem with any other network or task. We show that this framework scales to a wide variety of images, and illustrate the effectiveness of MASON in three varied application contexts.

Scalable Object Detection using Deep Neural Networks

arXiv.org Machine Learning

Deep convolutional neural networks have recently achieved state-of-the-art performance on a number of image recognition benchmarks, including the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2012). The winning model on the localization sub-task was a network that predicts a single bounding box and a confidence score for each object category in the image. Such a model captures the whole-image context around the objects but cannot handle multiple instances of the same object in the image without naively replicating the number of outputs for each instance. In this work, we propose a saliency-inspired neural network model for detection, which predicts a set of class-agnostic bounding boxes along with a single score for each box, corresponding to its likelihood of containing any object of interest. The model naturally handles a variable number of instances for each class and allows for cross-class generalization at the highest levels of the network. We are able to obtain competitive recognition performance on VOC2007 and ILSVRC2012, while using only the top few predicted locations in each image and a small number of neural network evaluations.

How to Perform Object Detection With YOLOv3 in Keras


Object detection is a task in computer vision that involves identifying the presence, location, and type of one or more objects in a given photograph. It is a challenging problem that involves building upon methods for object recognition (e.g. In recent years, deep learning techniques are achieving state-of-the-art results for object detection, such as on standard benchmark datasets and in computer vision competitions. Notable is the "You Only Look Once," or YOLO, family of Convolutional Neural Networks that achieve near state-of-the-art results with a single end-to-end model that can perform object detection in real-time. In this tutorial, you will discover how to develop a YOLOv3 model for object detection on new photographs.