Goto

Collaborating Authors

Python Data Science for Beginners

#artificialintelligence

Python is a popular high-level object-oriented programming language which is used widely by a huge number of software developers. Guido van Rossum designed this in 1991, and Python software foundation has further developed it. But the question is, with dozens of programming languages based on OOP concepts already available, why this new one? So, the main purpose to develop this language is to emphasize code readability and scientific and mathematical computing (e.g. Python's syntax is very clean and short in length.


Pandas for Everyone: Python Data Analysis

@machinelearnbot

Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem.


Data Analysis with Python and Pandas Udemy

@machinelearnbot

Python programmers are some of the most sought-after employees in the tech world, and Python itself is fast becoming one of the most popular programming languages. One of the best applications of Python however is data analysis; which also happens to be something that employers can't get enough of. Gaining skills in one or the other is a guaranteed way to boost your employability – but put the two together and you'll be unstoppable! This course contains 51 lectures and 6 hours of content, specially created for those with an interest in data analysis, programming, or the Python programming language. Once you have Python installed and are familiar with the language, you'll be all set to go.


Best Python Libraries for Machine Learning and Deep Learning

#artificialintelligence

To understand how to accomplish a specific task in TensorFlow, you can refer to the TensorFlow tutorials. Keras is one of the most popular and open-source neural network libraries for Python. Initially designed by a Google engineer for ONEIROS, short for Open-Ended Neuro Electronic Intelligent Robot Operating System, Keras was soon supported in TensorFlow's core library making it accessible on top of TensorFlow.


pandas: powerful Python data analysis toolkit -- pandas 0.20.3 documentation

@machinelearnbot

It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal. The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R's data.frame