Joint Visual-Textual Embedding for Multimodal Style Search Machine Learning

We introduce a multimodal visual-textual search refinement method for fashion garments. Existing search engines do not enable intuitive, interactive, refinement of retrieved results based on the properties of a particular product. We propose a method to retrieve similar items, based on a query item image and textual refinement properties. We believe this method can be leveraged to solve many real-life customer scenarios, in which a similar item in a different color, pattern, length or style is desired. We employ a joint embedding training scheme in which product images and their catalog textual metadata are mapped closely in a shared space. This joint visual-textual embedding space enables manipulating catalog images semantically, based on textual refinement requirements. We propose a new training objective function, Mini-Batch Match Retrieval, and demonstrate its superiority over the commonly used triplet loss. Additionally, we demonstrate the feasibility of adding an attribute extraction module, trained on the same catalog data, and demonstrate how to integrate it within the multimodal search to boost its performance. We introduce an evaluation protocol with an associated benchmark, and compare several approaches.

Medical Multimodal Classifiers Under Scarce Data Condition Machine Learning

Data is one of the essential ingredients to power deep learning research. Small datasets, especially specific to medical institutes, bring challenges to deep learning training stage. This work aims to develop a practical deep multimodal that can classify patients into abnormal and normal categories accurately as well as assist radiologists to detect visual and textual anomalies by locating areas of interest. The detection of the anomalies is achieved through a novel technique which extends the integrated gradients methodology with an unsupervised clustering algorithm. This technique also introduces a tuning parameter which trades off true positive signals to denoise false positive signals in the detection process. To overcome the challenges of the small training dataset which only has 3K frontal X-ray images and medical reports in pairs, we have adopted transfer learning for the multimodal which concatenates the layers of image and text submodels. The image submodel was trained on the vast ChestX-ray14 dataset, while the text submodel transferred a pertained word embedding layer from a hospital-specific corpus. Experimental results show that our multimodal improves the accuracy of the classification by 4% and 7% on average of 50 epochs, compared to the individual text and image model, respectively.

Sentiment Classification using Images and Label Embeddings Machine Learning

In this project we analysed how much semantic information images carry, and how much value image data can add to sentiment analysis of the text associated with the images. To better understand the contribution from images, we compared models which only made use of image data, models which only made use of text data, and models which combined both data types. We also analysed if this approach could help sentiment classifiers generalize to unknown sentiments.

Graph-RISE: Graph-Regularized Image Semantic Embedding Machine Learning

Learning image representations to capture fine-grained semantics has been a challenging and important task enabling many applications such as image search and clustering. In this paper, we present Graph-Regularized Image Semantic Embedding (Graph-RISE), a large-scale neural graph learning framework that allows us to train embeddings to discriminate an unprecedented O(40M) ultra-fine-grained semantic labels. Graph-RISE outperforms state-of-the-art image embedding algorithms on several evaluation tasks, including image classification and triplet ranking. We provide case studies to demonstrate that, qualitatively, image retrieval based on Graph-RISE effectively captures semantics and, compared to the state-of-the-art, differentiates nuances at levels that are closer to human-perception.