Bayesian Computational Analyses with R is an introductory course on the use and implementation of Bayesian modeling using R software. The Bayesian approach is an alternative to the "frequentist" approach where one simply takes a sample of data and makes inferences about the likely parameters of the population. In contrast, the Bayesian approach uses both likelihood functions and a sample of observed data (the'prior') to estimate the most likely values and distributions for the estimated population parameters (the'posterior'). The course is useful to anyone who wishes to learn about Bayesian concepts and is suited to both novice and intermediate Bayesian students and Bayesian practitioners. It is both a practical, "hands-on" course with many examples using R scripts and software, and is conceptual, as the course explains the Bayesian concepts. All materials, software, R scripts, slides, exercises and solutions are included with the course materials. It is helpful to have some grounding in basic inferential statistics and probability theory. No experience with R is necessary, although it is also helpful.

About this course: Bayesian methods are used in lots of fields: from game development to drug discovery. They give superpowers to many machine learning algorithms: handling missing data, extracting much more information from small datasets. Bayesian methods also allow us to estimate uncertainty in predictions, which is a really desirable feature for fields like medicine. When Bayesian methods are applied to deep learning, it turns out that they allow you to compress your models 100 folds, and automatically tune hyperparametrs, saving your time and money. In six weeks we will discuss the basics of Bayesian methods: from how to define a probabilistic model to how to make predictions from it.

About this course: This course introduces the Bayesian approach to statistics, starting with the concept of probability and moving to the analysis of data. We will learn about the philosophy of the Bayesian approach as well as how to implement it for common types of data. We will compare the Bayesian approach to the more commonly-taught Frequentist approach, and see some of the benefits of the Bayesian approach. In particular, the Bayesian approach allows for better accounting of uncertainty, results that have more intuitive and interpretable meaning, and more explicit statements of assumptions. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. For computing, you have the choice of using Microsoft Excel or the open-source, freely available statistical package R, with equivalent content for both options. The lectures provide some of the basic mathematical development as well as explanations of philosophy and interpretation. Completion of this course will give you an understanding of the concepts of the Bayesian approach, understanding the key differences between Bayesian and Frequentist approaches, and the ability to do basic data analyses.

Editor's note: The following is an interview with Columbia University Professor Andrew Gelman conducted by Marketing scientist Kevin Gray, in which Gelman spells out the ABCs of Bayesian statistics. Kevin Gray: Most marketing researchers have heard of Bayesian statistics but know little about it. Can you briefly explain in layperson's terms what it is and how it differs from the'ordinary' statistics most of us learned in college? Andrew Gelman: Bayesian statistics uses the mathematical rules of probability to combines data with "prior information" to give inferences which (if the model being used is correct) are more precise than would be obtained by either source of information alone. Classical statistical methods avoid prior distributions.

How is Bayes' Theorem used in artificial intelligence and machine learning? Is there any good book that you can recommend? As an high school student I will be writing an essay about it, and I want to use the best sources that I can find. I need a source that explains bayes' theorem, its general use and how it is used in AI or ML?