Oversampling for Imbalanced Learning Based on K-Means and SMOTE

arXiv.org Machine Learning

Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.


Comparing Different Classification Machine Learning Models for an imbalanced dataset

#artificialintelligence

A data set is called imbalanced if it contains many more samples from one class than from the rest of the classes. Data sets are unbalanced when at least one class is represented by only a small number of training examples (called the minority class) while other classes make up the majority. In this scenario, classifiers can have good accuracy on the majority class but very poor accuracy on the minority class(es) due to the influence that the larger majority class. The common example of such dataset is credit card fraud detection, where data points for fraud 1, are usually very less in comparison to fraud 0. There are many reasons why a dataset might be imbalanced: the category one is targeting might be very rare in the population, or the data might simply be difficult to collect. Let's solve the problem of an imbalanced dataset by working on one such dataset.


SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

Journal of Artificial Intelligence Research

The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered "de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to different type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several different domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also significantly contributed to new supervised learning paradigms, including multilabel classification, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of different software packages - from open source to commercial. In this paper, marking the fifteen year anniversary of SMOTE, we reflect on the SMOTE journey, discuss the current state of affairs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.


Unknown Examples & Machine Learning Model Generalization

arXiv.org Machine Learning

Over the past decades, researchers and ML practitioners have come up with better and better ways to build, understand and improve the quality of ML models, but mostly under the key assumption that the training data is distributed identically to the testing data. In many real-world applications, however, some potential training examples are unknown to the modeler, due to sample selection bias or, more generally, covariate shift, i.e., a distribution shift between the training and deployment stage. The resulting discrepancy between training and testing distributions leads to poor generalization performance of the ML model and hence biased predictions. We provide novel algorithms that estimate the number and properties of these unknown training examples---unknown unknowns. This information can then be used to correct the training set, prior to seeing any test data. The key idea is to combine species-estimation techniques with data-driven methods for estimating the feature values for the unknown unknowns. Experiments on a variety of ML models and datasets indicate that taking the unknown examples into account can yield a more robust ML model that generalizes better.


SMOTE: Synthetic Minority Over-sampling Technique

arXiv.org Artificial Intelligence

An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.