Data Cleansing with Apache Spark and Optimus

#artificialintelligence

Outdated, inaccurate, or duplicated data won't drive optimal data driven solutions. When data is inaccurate, leads are harder to track and nurture, and insights may be flawed. The data on which you base your big data strategy must be accurate, up-to-date, as complete as possible, and should not contain duplicate entries. Cleaning data is the most time-consuming and least enjoyable data science task (until Optimus), but one of the most important ones. No one can start a data science, machine learning or data driven solution without being sure that the data that they'll be consuming is at its optimal stage.



The real big-data problem and why only machine learning can fix it - SiliconANGLE

#artificialintelligence

Why do so many companies still struggle to build a smooth-running pipeline from data to insights? They invest in heavily hyped machine-learning algorithms to analyze data and make business predictions. Then, inevitably, they realize that algorithms aren't magic; if they're fed junk data, their insights won't be stellar. So they employ data scientists that spend 90% of their time washing and folding in a data-cleaning laundromat, leaving just 10% of their time to do the job for which they were hired. What is flawed about this process is that companies only get excited about machine learning for end-of-the-line algorithms; they should apply machine learning just as liberally in the early cleansing stages instead of relying on people to grapple with gargantuan data sets, according to Andy Palmer, co-founder and chief executive officer of Tamr Inc., which helps organizations use machine learning to unify their data silos.


Python Training Python For Data Science Learn Python

@machinelearnbot

So, you want to become a data scientist or may be you are already one and want to expand your tool repository. You have landed at the right place. The aim of this page is to provide a comprehensive learning path to people new to python for data analysis. This path provides a comprehensive overview of steps you need to learn to use Python for data analysis. If you already have some background, or don't need all the components, feel free to adapt your own paths and let us know how you made changes in the path.


Sales Data Analysis using DataIku Studio

@machinelearnbot

Dataiku Data Science Studio (DSS), a complete data science software platform, is used to explore, prototype, build, and deliver data products. It significantly reduces the time taken by data scientists, data analysts, and data engineers to perform data loading, data cleaning, data preparation, data integration, and data transformation when building powerful predictive applications. It is easy and more user-friendly to explore the data and perform data cleansing. In this blog, let us discuss about data cleansing, data transformation, and data visualization of sales data of a financial company using Dataiku DSS. Download and install Dataiku DSS Version 4.0.4 on Ubuntu from here The storage type of the data and meanings of the data will be automatically detected from the content of the columns, where the "meaning" is of rich semantic type.