Goto

Collaborating Authors

Transfer Style But Not Color

#artificialintelligence

But what if we want to keep the beautiful colors in the photograph and still draw it in the style of the great Picasso? So far this wasn't really possible, since our style transfer algorithm would also transfer the colors from the style image. Below you can flip through more examples. The first image is always the original photograph, followed by renderings in the style of five different artists (style images are shown at the end). So what do you think?



Unsupervised Learning of Artistic Styles with Archetypal Style Analysis

arXiv.org Machine Learning

In this paper, we introduce an unsupervised learning approach to automatically discover, summarize, and manipulate artistic styles from large collections of paintings. Our method is based on archetypal analysis, which is an unsupervised learning technique akin to sparse coding with a geometric interpretation. When applied to deep image representations from a collection of artworks, it learns a dictionary of archetypal styles, which can be easily visualized. After training the model, the style of a new image, which is characterized by local statistics of deep visual features, is approximated by a sparse convex combination of archetypes. This enables us to interpret which archetypal styles are present in the input image, and in which proportion. Finally, our approach allows us to manipulate the coefficients of the latent archetypal decomposition, and achieve various special effects such as style enhancement, transfer, and interpolation between multiple archetypes.


Unsupervised Learning of Artistic Styles with Archetypal Style Analysis

Neural Information Processing Systems

In this paper, we introduce an unsupervised learning approach to automatically dis- cover, summarize, and manipulate artistic styles from large collections of paintings. Our method is based on archetypal analysis, which is an unsupervised learning technique akin to sparse coding with a geometric interpretation. When applied to deep image representations from a data collection, it learns a dictionary of archetypal styles, which can be easily visualized. After training the model, the style of a new image, which is characterized by local statistics of deep visual features, is approximated by a sparse convex combination of archetypes. This allows us to interpret which archetypal styles are present in the input image, and in which proportion. Finally, our approach allows us to manipulate the coefficients of the latent archetypal decomposition, and achieve various special effects such as style enhancement, transfer, and interpolation between multiple archetypes.


Unsupervised Learning of Artistic Styles with Archetypal Style Analysis

Neural Information Processing Systems

In this paper, we introduce an unsupervised learning approach to automatically dis- cover, summarize, and manipulate artistic styles from large collections of paintings. Our method is based on archetypal analysis, which is an unsupervised learning technique akin to sparse coding with a geometric interpretation. When applied to deep image representations from a data collection, it learns a dictionary of archetypal styles, which can be easily visualized. After training the model, the style of a new image, which is characterized by local statistics of deep visual features, is approximated by a sparse convex combination of archetypes. This allows us to interpret which archetypal styles are present in the input image, and in which proportion. Finally, our approach allows us to manipulate the coefficients of the latent archetypal decomposition, and achieve various special effects such as style enhancement, transfer, and interpolation between multiple archetypes.