### Which is your favorite Machine Learning Algorithm?

Developed back in the 50s by Rosenblatt and colleagues, this extremely simple algorithm can be viewed as the foundation for some of the most successful classifiers today, including suport vector machines and logistic regression, solved using stochastic gradient descent. The convergence proof for the Perceptron algorithm is one of the most elegant pieces of math I've seen in ML. Most useful: Boosting, especially boosted decision trees. This intuitive approach allows you to build highly accurate ML models, by combining many simple ones. Boosting is one of the most practical methods in ML, it's widely used in industry, can handle a wide variety of data types, and can be implemented at scale.

### These Are The Most Elegant, Useful Algorithms In Machine Learning

Developed back in the 50s by Rosenblatt and colleagues, this extremely simple algorithm can be viewed as the foundation for some of the most successful classifiers today, including suport vector machines and logistic regression, solved using stochastic gradient descent. The convergence proof for the Perceptron algorithm is one of the most elegant pieces of math I've seen in ML. Most useful: Boosting, especially boosted decision trees. This intuitive approach allows you to build highly accurate ML models, by combining many simple ones. Boosting is one of the most practical methods in ML, it's widely used in industry, can handle a wide variety of data types, and can be implemented at scale.

### Introduction to Backpropagation with Python

MOOC Video Collection 777 views Decision Theory: Utility Functions - Stanford University - Duration: 18:16.

### Probability and Statistics explained in the context of deep learning

This article is intended for beginners in deep learning who wish to gain knowledge about probability and statistics and also as a reference for practitioners. In my previous article, I wrote about the concepts of linear algebra for deep learning in a top down approach ( link for the article) (If you do not have enough idea about linear algebra, please read that first).The same top down approach is used here.Providing the description of use cases first and then the concepts. All the example code uses python and numpy.Formulas are provided as images for reuse. Probability is the science of quantifying uncertain things.Most of machine learning and deep learning systems utilize a lot of data to learn about patterns in the data.Whenever data is utilized in a system rather than sole logic, uncertainty grows up and whenever uncertainty grows up, probability becomes relevant. By introducing probability to a deep learning system, we introduce common sense to the system.Otherwise the system would be very brittle and will not be useful.In deep learning, several models like bayesian models, probabilistic graphical models, hidden markov models are used.They depend entirely on probability concepts.

### Gaussian-binary Restricted Boltzmann Machines on Modeling Natural Image Statistics

We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the perspective of density models. The key aspect of this analysis is to show that GRBMs can be formulated as a constrained mixture of Gaussians, which gives a much better insight into the model's capabilities and limitations. We show that GRBMs are capable of learning meaningful features both in a two-dimensional blind source separation task and in modeling natural images. Further, we show that reported difficulties in training GRBMs are due to the failure of the training algorithm rather than the model itself. Based on our analysis we are able to propose several training recipes, which allowed successful and fast training in our experiments. Finally, we discuss the relationship of GRBMs to several modifications that have been proposed to improve the model.