Goto

Collaborating Authors


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Targeting Sentiment Expressions through Supervised Ranking of Linguistic Configurations

AAAI Conferences

User generated content is extremely valuable for mining market intelligence because it is unsolicited. We study the problem of analyzing users' sentiment and opinion in their blog, message board, etc. posts with respect to topics expressed as a search query.  In the scenario we consider the matches of the search query terms are expanded through coreference and meronymy to produce a set of mentions.  The mentions are contextually evaluated for sentiment and their scores are aggregated (using a data structure we introduce call the sentiment propagation graph) to produce an aggregate score for the input entity.  An extremely crucial part in the contextual evaluation of individual mentions is finding which sentiment expressions are semantically related to (target) which mentions --- this is the focus of our paper.  We present an approach where potential target mentions for a sentiment expression are ranked using supervised machine learning (Support Vector Machines) where the main features are the syntactic configurations (typed dependency paths) connecting the sentiment expression and the mention.  We have created a large English corpus of product discussions blogs annotated with semantic types of mentions, coreference, meronymy and sentiment targets.  The corpus proves that coreference and meronymy are not marginal phenomena but are really central to determining the overall sentiment for the top-level entity.  We evaluate a number of techniques for sentiment targeting and present results which we believe push the current state-of-the-art.


Machine Learning Testing: Survey, Landscapes and Horizons

arXiv.org Artificial Intelligence

This paper provides a comprehensive survey of Machine Learning Testing (ML testing) research. It covers 128 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.


Answer Finding Guided by Question Semantic Constraints

AAAI Conferences

As part of the task of automated question answering from a large collection of text documents, the reduction of the search space to a smaller set of document passages that are actually searched for answers constitutes a difficult but rewarding research issue. We propose a set of precision-enhancing filters for passage retrieval based on semantic constraints detected in the submitted questions. The approach improves the performance of the underlying question answering system in terms of both answer accuracy and time performance.