Diagnosing early-stage cervical cancer using artificial intelligence


Using an artificial intelligence-based algorithm that uses scattered light data from tissues, researchers from IISER Kolkata and IIT Kanpur have been able to differentiate normal and precancerous tissue, and even identify the different stages of progression of the disease within a few minutes and with great accuracy. In vivo studies are now being carried out.

Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines

Neural Information Processing Systems

We present a type of Temporal Restricted Boltzmann Machine that defines a probability distribution over an output sequence conditional on an input sequence. It shares the desirable properties of RBMs: efficient exact inference, an exponentially more expressive latent state than HMMs, and the ability to model nonlinear structure and dynamics. We apply our model to a challenging real-world graphics problem: facial expression transfer. Our results demonstrate improved performance over several baselines modeling high-dimensional 2D and 3D data. Papers published at the Neural Information Processing Systems Conference.

Comparison of Human and Machine Word Recognition

Neural Information Processing Systems

We present a study which is concerned with word recognition rates for heavily degraded documents. We compare human with machine reading capabilitiesin a series of experiments, which explores the interaction of word/non-word recognition, word frequency and legality of non-words with degradation level. We also study the influence of character segmentation, andcompare human performance with that of our artificial neural network model for reading. We found that the proposed computer model uses word context as efficiently as humans, but performs slightly worse on the pure character recognition task. 1 Introduction Optical Character Recognition (OCR) of machine-print document images ┬Ěhas matured considerably during the last decade. Recognition rates as high as 99.5% have been reported ongood quality documents. However, for lower image resolutions (200 Dpl and below), noisy images, images with blur or skew, the recognition rate declines considerably. Inbad quality documents, character segmentation is as big a problem as the actual character recognition.

Planar Hidden Markov Modeling: From Speech to Optical Character Recognition

Neural Information Processing Systems

We propose in this paper a statistical model (planar hidden Markov model - PHMM) describing statistical properties of images. The model generalizes the single-dimensional HMM, used for speech processing, to the planar case. For this model to be useful an efficient segmentation algorithm, similar to the Viterbi algorithm for HMM, must exist We present conditions in terms of the PHMM parameters that are sufficient to guarantee that the planar segmentation problem can be solved in polynomial time, and describe an algorithm for that. This algorithm aligns optimally the image with the model, and therefore is insensitive to elastic distortions of images. Using this algorithm a joint optima1 segmentation and recognition of the image can be performed, thus overcoming the weakness of traditional OCR systems where segmentation is performed independently before the recognition leading to unrecoverable recognition errors. Tbe PHMM approach was evaluated using a set of isolated band-written digits. An overall digit recognition accuracy of 95% was acbieved. An analysis of the results showed that even in the simple case of recognition of isolated characters, the elimination of elastic distortions enhances the performance Significantly. We expect that the advantage of this approach will be even more significant for tasks such as connected writing recognition/spotting, for whicb there is no known high accuracy method of recognition.