Goto

Collaborating Authors

Discriminative models for robust image classification

arXiv.org Machine Learning

A variety of real-world tasks involve the classification of images into pre-determined categories. Designing image classification algorithms that exhibit robustness to acquisition noise and image distortions, particularly when the available training data are insufficient to learn accurate models, is a significant challenge. This dissertation explores the development of discriminative models for robust image classification that exploit underlying signal structure, via probabilistic graphical models and sparse signal representations. Probabilistic graphical models are widely used in many applications to approximate high-dimensional data in a reduced complexity set-up. Learning graphical structures to approximate probability distributions is an area of active research. Recent work has focused on learning graphs in a discriminative manner with the goal of minimizing classification error. In the first part of the dissertation, we develop a discriminative learning framework that exploits the complementary yet correlated information offered by multiple representations (or projections) of a given signal/image. Specifically, we propose a discriminative tree-based scheme for feature fusion by explicitly learning the conditional correlations among such multiple projections in an iterative manner. Experiments reveal the robustness of the resulting graphical model classifier to training insufficiency.



Multi-Instance Dynamic Ordinal Random Fields for Weakly-supervised Facial Behavior Analysis

arXiv.org Artificial Intelligence

We propose a Multi-Instance-Learning (MIL) approach for weakly-supervised learning problems, where a training set is formed by bags (sets of feature vectors or instances) and only labels at bag-level are provided. Specifically, we consider the Multi-Instance Dynamic-Ordinal-Regression (MI-DOR) setting, where the instance labels are naturally represented as ordinal variables and bags are structured as temporal sequences. To this end, we propose Multi-Instance Dynamic Ordinal Random Fields (MI-DORF). In this framework, we treat instance-labels as temporally-dependent latent variables in an Undirected Graphical Model. Different MIL assumptions are modelled via newly introduced high-order potentials relating bag and instance-labels within the energy function of the model. We also extend our framework to address the Partially-Observed MI-DOR problems, where a subset of instance labels are available during training. We show on the tasks of weakly-supervised facial behavior analysis, Facial Action Unit (DISFA dataset) and Pain (UNBC dataset) Intensity estimation, that the proposed framework outperforms alternative learning approaches. Furthermore, we show that MIDORF can be employed to reduce the data annotation efforts in this context by large-scale.


Automatic Language Identification in Texts: A Survey

Journal of Artificial Intelligence Research

Language identification (“LI”) is the problem of determining the natural language that a document or part thereof is written in. Automatic LI has been extensively researched for over fifty years. Today, LI is a key part of many text processing pipelines, as text processing techniques generally assume that the language of the input text is known. Research in this area has recently been especially active. This article provides a brief history of LI research, and an extensive survey of the features and methods used in the LI literature. We describe the features and methods using a unified notation, to make the relationships between methods clearer. We discuss evaluation methods, applications of LI, as well as off-the-shelfLI systems that do not require training by the end user. Finally, we identify open issues, survey the work to date on each issue, and propose future directions for research in LI.


Make3D: Depth Perception from a Single Still Image

AAAI Conferences

Humans have an amazing ability to perceive depth from a single still image; however, it remains a challenging problem for current computer vision systems. In this paper, we will present algorithms for estimating depth from a single still image. There are numerous monocular cues--such as texture variations and gradients, defocus, color/haze, etc.--that can be used for depth perception. Taking a supervised learning approach to this problem, in which we begin by collecting a training set of single images and their corresponding groundtruth depths, we learn the mapping from image features to the depths. We then apply these ideas to create 3d models that are visually-pleasing as well as quantitatively accurate from individual images. We also discuss applications of our depth perception algorithm in robotic navigation, in improving the performance of stereovision, and in creating large-scale 3d models given only a small number of images.