Propagation of Delays in the National Airspace System Artificial Intelligence

The National Airspace System (NAS) is a large and complex system with thousands of interrelated components: administration, control centers, airports, airlines, aircraft, passengers, etc. The complexity of the NAS creates many difficulties in management and control. One of the most pressing problems is flight delay. Delay creates high cost to airlines, complaints from passengers, and difficulties for airport operations. As demand on the system increases, the delay problem becomes more and more prominent. For this reason, it is essential for the Federal Aviation Administration to understand the causes of delay and to find ways to reduce delay. Major contributing factors to delay are congestion at the origin airport, weather, increasing demand, and air traffic management (ATM) decisions such as the Ground Delay Programs (GDP). Delay is an inherently stochastic phenomenon. Even if all known causal factors could be accounted for, macro-level national airspace system (NAS) delays could not be predicted with certainty from micro-level aircraft information. This paper presents a stochastic model that uses Bayesian Networks (BNs) to model the relationships among different components of aircraft delay and the causal factors that affect delays. A case study on delays of departure flights from Chicago O'Hare international airport (ORD) to Hartsfield-Jackson Atlanta International Airport (ATL) reveals how local and system level environmental and human-caused factors combine to affect components of delay, and how these components contribute to the final arrival delay at the destination airport.

Google Brain Co-Founder Teams With Foxconn to Bring AI to Factories


Consumers now experience AI mostly through image recognition to help categorize digital photographs and speech recognition that helps power digital voice assistants such as Apple Inc's Siri or But at a press briefing in San Francisco two days before Ng's In many factories, workers look over parts coming off an assembly line for defects. Ng showed a video in which a worker instead put a circuit board beneath a digital camera connected to a computer and the computer identified a defect in the part. Ng said that while typical computer vision systems might require thousands of sample images to become "trained,"'s

US Air Force funds Explainable-AI for UAV tech


Z Advanced Computing, Inc. (ZAC) of Potomac, MD announced on August 27 that it is funded by the US Air Force, to use ZAC's detailed 3D image recognition technology, based on Explainable-AI, for drones (unmanned aerial vehicle or UAV) for aerial image/object recognition. ZAC is the first to demonstrate Explainable-AI, where various attributes and details of 3D (three dimensional) objects can be recognized from any view or angle. "With our superior approach, complex 3D objects can be recognized from any direction, using only a small number of training samples," said Dr. Saied Tadayon, CTO of ZAC. "For complex tasks, such as drone vision, you need ZAC's superior technology to handle detailed 3D image recognition." "You cannot do this with the other techniques, such as Deep Convolutional Neural Networks, even with an extremely large number of training samples. That's basically hitting the limits of the CNNs," continued Dr. Bijan Tadayon, CEO of ZAC.

Elon Musk, DeepMind and AI researchers promise not to develop robot killing machines

The Independent - Tech

Elon Musk and many of the world's most respected artificial intelligence researchers have committed not to build autonomous killer robots. The public pledge not to make any "lethal autonomous weapons" comes amid increasing concern about how machine learning and AI will be used on the battlefields of the future. The signatories to the new pledge – which includes the founders of DeepMind, a founder of Skype, and leading academics from across the industry – promise that they will not allow the technology they create to be used to help create killing machines. The I.F.O. is fuelled by eight electric engines, which is able to push the flying object to an estimated top speed of about 120mph. The giant human-like robot bears a striking resemblance to the military robots starring in the movie'Avatar' and is claimed as a world first by its creators from a South Korean robotic company Waseda University's saxophonist robot WAS-5, developed by professor Atsuo Takanishi and Kaptain Rock playing one string light saber guitar perform jam session A man looks at an exhibit entitled'Mimus' a giant industrial robot which has been reprogrammed to interact with humans during a photocall at the new Design Museum in South Kensington, London Electrification Guru Dr. Wolfgang Ziebart talks about the electric Jaguar I-PACE concept SUV before it was unveiled before the Los Angeles Auto Show in Los Angeles, California, U.S The Jaguar I-PACE Concept car is the start of a new era for Jaguar.

Watson Will Soon Be a Bus Driver In Washington D.C.


IBM has teamed up with Local Motors, a Phoenix-based automotive manufacturer that made the first 3D-printed car, to create a self-driving electric bus. Named "Olli," the bus has room for 12 people and uses IBM Watson's cloud-based cognitive computing system to provide information to passengers. In addition to automatically driving you where you want to go using Phoenix Wings autonomous driving technology, Olli can respond to questions and provide information, similar to Amazon's Echo home assistant. The bus debuts today in the Washington D.C. area for the public to use during select times over the next several months, and the IBM-Local Motors team hopes to introduce Olli to the Miami and Las Vegas areas by the end of the year. By using Watson's speech to text, natural language classifier, entity extraction, and text to speech APIs, the bus can provide several services beyond taking you to your destination.