Goto

Collaborating Authors


Scientific Knowledge Graph

#artificialintelligence

In the last decade, we experienced an urgent need for a flexible, context-sensitive, fine-grained, and machine-actionable representation of scholarly knowledge and corresponding infrastructures for knowledge curation, publishing and processing. Such technical infrastructures are becoming increasingly popular in representing scholarly knowledge as structured, interlinked, and semantically rich Scientific Knowledge Graphs (SKG). Knowledge graphs are large networks of entities and relationships, usually expressed in W3C standards such as OWL and RDF. SKGs focus on the scholarly domain and describe the actors (e.g., authors, organizations), the documents (e.g., publications, patents), and the research knowledge (e.g., research topics, tasks, technologies) in this space as well as their reciprocal relationships. These resources provide substantial benefits to researchers, companies, and policymakers by powering several data-driven services for navigating, analysing, and making sense of research dynamics.


KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization and Completion

arXiv.org Artificial Intelligence

A comprehensive knowledge graph (KG) contains an instance-level entity graph and an ontology-level concept graph. The two-view KG provides a testbed for models to "simulate" human's abilities on knowledge abstraction, concretization, and completion (KACC), which are crucial for human to recognize the world and manage learned knowledge. Existing studies mainly focus on partial aspects of KACC. In order to promote thorough analyses for KACC abilities of models, we propose a unified KG benchmark by improving existing benchmarks in terms of dataset scale, task coverage, and difficulty. Specifically, we collect new datasets that contain larger concept graphs, abundant cross-view links as well as dense entity graphs. Based on the datasets, we propose novel tasks such as multi-hop knowledge abstraction (MKA), multi-hop knowledge concretization (MKC) and then design a comprehensive benchmark. For MKA and MKC tasks, we further annotate multi-hop hierarchical triples as harder samples. The experimental results of existing methods demonstrate the challenges of our benchmark. The resource is available at https://github.com/thunlp/KACC.


Knowledge graphs beyond the hype: Getting knowledge in and out of graphs and databases

ZDNet

We can officially say this now, since Gartner included knowledge graphs in the 2018 hype cycle for emerging technologies. Though we did not have to wait for Gartner -- declaring this as the "Year of the Graph" was our opener for 2018. Like anyone active in the field, we see the opportunity, as well as the threat in this: With hype comes confusion. They have been for the last 20 years at least. Knowledge graphs, in their original definition and incarnation, have been about knowledge representation and reasoning.


Knowledge Maps of Web Graphs

AAAI Conferences

In this short note we give an overview of our research concerning cartography on the Web and its challenges. We present a mathematical formalism to capture the notion of map on the Web, which allows to automatize the construction of maps.