Goto

Collaborating Authors

AI companies plant the seeds for quantum machine learning

#artificialintelligence

Quantum isn't the next big thing in advanced computing so much as a futuristic approach that could potentially be the biggest thing of all. Considering the theoretical possibility of quantum fabrics that enable seemingly magical, astronomically parallel, unbreakably encrypted, and faster-than-light subatomic computations, this could be the omega architecture in the evolution of AI (artificial intelligence). No one doubts that the IT industry is making impressive progress in developing and commercializing quantum technologies. But this mania is also shaping up to be the hype that ends all hype. It will take time for quantum technology to prove itself a worthy successor to computing's traditional von Neumann architecture.


Google launches TensorFlow Quantum, a machine learning framework for training quantum models

#artificialintelligence

Google today announced the launch of TensorFlow Quantum, bringing together machine learning and quantum computing initiatives at the company. The framework can construct quantum datasets, prototype hybrid quantum and classic machine learning models, support quantum circuit simulators, and train discriminative and generative quantum models. Last fall, Google said it achieved quantum supremacy with the debut of a newly engineered solution. The release of TensorFlow Quantum follows the launch of Azure Quantum and progress by companies like Honeywell. Creating quantum models is made possible with standard Keras functions and by providing quantum circuit simulators and quantum computing primitives compatible with existing TensorFlow APIs, according to a Google AI blog.


MDE4QAI: Towards Model-Driven Engineering for Quantum Artificial Intelligence

arXiv.org Artificial Intelligence

Over the past decade, Artificial Intelligence (AI) has provided enormous new possibilities and opportunities, but also new demands and requirements for software systems. In particular, Machine Learning (ML) has proven useful in almost every vertical application domain. Although other sub-disciplines of AI, such as intelligent agents and Multi-Agent Systems (MAS) did not become promoted to the same extent, they still possess the potential to be integrated into the mainstream technology stacks and ecosystems, for example, due to the ongoing prevalence of the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS). However, in the decade ahead, an unprecedented paradigm shift from classical computing towards Quantum Computing (QC) is expected, with perhaps a quantum-classical hybrid model. We expect the Model-Driven Engineering (MDE) paradigm to be an enabler and a facilitator, when it comes to the quantum and the quantum-classical hybrid applications as it has already proven beneficial in the highly complex domains of IoT, smart CPS and AI with inherently heterogeneous hardware and software platforms, and APIs. This includes not only automated code generation, but also automated model checking and verification, as well as model analysis in the early design phases, and model-to-model transformations both at the design-time and at the runtime. In this paper, the vision is focused on MDE for Quantum AI, and a holistic approach integrating all of the above.


Google launches machine learning framework for training quantum models

#artificialintelligence

Google has revealed it is bringing together its machine learning and quantum computing initiatives with the launch of TensorFlow Quantum. The machine learning framework has the ability to construct quantum datasets, prototype hybrid quantum and classic machine learning models, support quantum circuit simulators and train both discriminative and generative quantum models. According to a Google AI blog, TensorFlow Quantum is able to create quantum models with standard Keras functions and by providing quantum circuit simulators and quantum computing primitives compatible with existing TensorFlow APIs. The release of TensorFlow Quantum comes after Microsoft's launch of Azure Quantum and the recent news that Honeywell is developing a quantum computer with a quantum volume of at least 64 which will be available in the next three months. In an abstract for a paper, authored by members of Alphabet's X unit, The Institute for Quantum Computing at the University of Waterloo, NASA's Quantum AI Lab, Volkswagen and Google Research, submitted to the preprint repository arXiv, the authors explain what they believe TensorFlow Quantum can achieve, saying: "We hope this framework provides the necessary tools for the quantum computing and machine learning research communities to explore models of both natural and artificial quantum systems, and ultimately discover new quantum algorithms which could potentially yield a quantum advantage."


Google's TensorFlow is ready for quantum, but is AI ready for quantum?

#artificialintelligence

Spoiler alert: Quantum computers may not make your cats and dogs classifiers go any faster. Here's how you can still get a free Windows 10 upgrade You can still use Microsoft's free upgrade tools to install Windows 10 on an old PC running Windows 7 or Windows 8.1. No product key is required, and the digital license says you're activated and ready to go. Google this week announced a new version of its TensorFlow framework for building machine learning models, a kind of mash-up between TensorFlow and Cinq, another framework developed at Google that's designed for building quantum computing algorithms. Together, they could let you build a deep learning model to run on a future quantum computer with no more than a bunch of lines of Python.