Goto

Collaborating Authors

A Gentle Introduction to RNN Unrolling - Machine Learning Mastery

#artificialintelligence

Recurrent neural networks are a type of neural network where the outputs from previous time steps are fed as input to the current time step. This creates a network graph or circuit diagram with cycles, which can make it difficult to understand how information moves through the network. In this post, you will discover the concept of unrolling or unfolding recurrent neural networks. Recurrent neural networks are a type of neural network where outputs from previous time steps are taken as inputs for the current time step. We can demonstrate this with a picture.


Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs

#artificialintelligence

Recurrent Neural Networks (RNNs) are popular models that have shown great promise in many NLP tasks. But despite their recent popularity I've only found a limited number of resources that throughly explain how RNNs work, and how to implement them. That's what this tutorial is about. It's a multi-part series in which I'm planning to cover the following: As part of the tutorial we will implement a recurrent neural network based language model. The applications of language models are two-fold: First, it allows us to score arbitrary sentences based on how likely they are to occur in the real world.


Memory-Efficient Backpropagation Through Time

Neural Information Processing Systems

We propose a novel approach to reduce memory consumption of the backpropagation through time (BPTT) algorithm when training recurrent neural networks (RNNs). Our approach uses dynamic programming to balance a trade-off between caching of intermediate results and recomputation. The algorithm is capable of tightly fitting within almost any user-set memory budget while finding an optimal execution policy minimizing the computational cost. Computational devices have limited memory capacity and maximizing a computational performance given a fixed memory budget is a practical use-case. We provide asymptotic computational upper bounds for various regimes. The algorithm is particularly effective for long sequences. For sequences of length 1000, our algorithm saves 95\% of memory usage while using only one third more time per iteration than the standard BPTT.


Linear Memory Networks

arXiv.org Machine Learning

Recurrent neural networks can learn complex transduction problems that require maintaining and actively exploiting a memory of their inputs. Such models traditionally consider memory and input-output functionalities indissolubly entangled. We introduce a novel recurrent architecture based on the conceptual separation between the functional input-output transformation and the memory mechanism, showing how they can be implemented through different neural components. By building on such conceptualization, we introduce the Linear Memory Network, a recurrent model comprising a feedforward neural network, realizing the non-linear functional transformation, and a linear autoencoder for sequences, implementing the memory component. The resulting architecture can be efficiently trained by building on closed-form solutions to linear optimization problems. Further, by exploiting equivalence results between feedforward and recurrent neural networks we devise a pretraining schema for the proposed architecture. Experiments on polyphonic music datasets show competitive results against gated recurrent networks and other state of the art models.


Benchmarking Decoupled Neural Interfaces with Synthetic Gradients

arXiv.org Machine Learning

Artifical Neural Networks are a particular class of learning systems modeled after biological neural functions with an interesting penchant for Hebbian learning, that is "neurons that wire together, fire together". However, unlike their natural counterparts, artificial neural networks have a close and stringent coupling between the modules of neurons in the network. This coupling or locking imposes upon the network a strict and inflexible structure that prevent layers in the network from updating their weights until a full feed-forward and backward pass has occurred. Such a constraint though may have sufficed for a while, is now no longer feasible in the era of very-large-scale machine learning, coupled with the increased desire for parallelization of the learning process across multiple computing infrastructures. To solve this problem, synthetic gradients (SG) with decoupled neural interfaces (DNI) are introduced as a viable alternative to the backpropagation algorithm. This paper performs a speed benchmark to compare the speed and accuracy capabilities of SG-DNI as opposed to a standard neural interface using multilayer perceptron MLP. SG-DNI shows good promise, in that it not only captures the learning problem, it is also over 3-fold faster due to it asynchronous learning capabilities.