Goto

Collaborating Authors

Comparison between Deep Learning & Machine Learning

#artificialintelligence

All of a sudden every one is talking about them – irrespective of whether they understand the differences or not! Whether you have been actively following data science or not – you would have heard these terms. If you have often wondered to yourself what is the difference between machine learning and deep learning, read on to find out a detailed comparison in simple layman language. I have explained each of these term in detail. Then I have gone ahead to compare both of them and explained where we can use them.


Deep Q Learning with Keras and Gym – IIoT & Machine Learning

#artificialintelligence

This blog post will demonstrate how deep reinforcement learning (deep q learning) can be implemented and applied to play a CartPole game using Keras and Gym, in only 78 lines of code! I'll explain everything without requiring any prerequisite knowledge about reinforcement learning.


Comparison between Deep Learning & Machine Learning

#artificialintelligence

All of a sudden every one is talking about them – irrespective of whether they understand the differences or not! Whether you have been actively following data science or not – you would have heard these terms. If you have often wondered to yourself what is the difference between machine learning and deep learning, read on to find out a detailed comparison in simple layman language. I have explained each of these term in detail. Then I have gone ahead to compare both of them and explained where we can use them. Let us start with the basics – What is Machine Learning and What is Deep Learning.


Theoretical Comparisons of Positive-Unlabeled Learning against Positive-Negative Learning

Neural Information Processing Systems

In PU learning, a binary classifier is trained from positive (P) and unlabeled (U) data without negative (N) data. Although N data is missing, it sometimes outperforms PN learning (i.e., ordinary supervised learning). Hitherto, neither theoretical nor experimental analysis has been given to explain this phenomenon. In this paper, we theoretically compare PU (and NU) learning against PN learning based on the upper bounds on estimation errors. We find simple conditions when PU and NU learning are likely to outperform PN learning, and we prove that, in terms of the upper bounds, either PU or NU learning (depending on the class-prior probability and the sizes of P and N data) given infinite U data will improve on PN learning.


Unsupervised Feature Learning and Deep Learning Tutorial

#artificialintelligence

Description: This tutorial will teach you the main ideas of Unsupervised Feature Learning and Deep Learning. By working through it, you will also get to implement several feature learning/deep learning algorithms, get to see them work for yourself, and learn how to apply/adapt these ideas to new problems. This tutorial assumes a basic knowledge of machine learning (specifically, familiarity with the ideas of supervised learning, logistic regression, gradient descent). If you are not familiar with these ideas, we suggest you go to this Machine Learning course and complete sections II, III, IV (up to Logistic Regression) first.