A General Framework for Uncertainty Estimation in Deep Learning

arXiv.org Machine Learning

End-to-end learning has recently emerged as a promising technique to tackle the problem of autonomous driving. Existing works show that learning a navigation policy from raw sensor data may reduce the system's reliance on external sensing systems, (e.g. GPS), and/or outperform traditional methods based on state estimation and planning. However, existing end-to-end methods generally trade off performance for safety, hindering their diffusion to real-life applications. For example, when confronted with an input which is radically different from the training data, end-to-end autonomous driving systems are likely to fail, compromising the safety of the vehicle. To detect such failure cases, this work proposes a general framework for uncertainty estimation which enables a policy trained end-to-end to predict not only action commands, but also a confidence about its own predictions. In contrast to previous works, our framework can be applied to any existing neural network and task, without the need to change the network's architecture or loss, or to train the network. In order to do so, we generate confidence levels by forward propagation of input and model uncertainties using Bayesian inference. We test our framework on the task of steering angle regression for an autonomous car, and compare our approach to existing methods with both qualitative and quantitative results on a real dataset. Finally, we show an interesting by-product of our framework: robustness against adversarial attacks.


BAYESIAN DEEP LEARNING

#artificialintelligence

This article follows my previous one on Bayesian probability & probabilistic programming that I published few months ago on LinkedIn. And for the purpose of this article, I am going to assume that most this article readers have some idea what a Neural Network or Artificial Neural Network is. Neural Network is a non-linear function approximator. We can think of it as a parameterized function where the parameters are the weights & biases of Neural Network through which we will be typically passing our data (inputs), that will be converted to a probability between 0 and 1, to some kind of non-linearity such as a sigmoid function and help make our predictions or estimations. These non-linear functions can be composed together hence Deep Learning Neural Network with multiple layers of this function compositions.


Overview of Udacity Artificial Intelligence Engineer Nanodegree, Term 1

#artificialintelligence

After finishing Udacity Deep Learning Foundation I felt that I got a good introduction to Deep Learning, but to understand things, I must dig deeper. Besides I had a guaranteed admission to Self-Driving Car Engineer, Artificial Intelligence, or Robotics Nanodegree programs.


Spatial Uncertainty Sampling for End-to-End Control

arXiv.org Artificial Intelligence

End-to-end trained neural networks (NNs) are a compelling approach to autonomous vehicle control because of their ability to learn complex tasks without manual engineering of rule-based decisions. However, challenging road conditions, ambiguous navigation situations, and safety considerations require reliable uncertainty estimation for the eventual adoption of full-scale autonomous vehicles. Bayesian deep learning approaches provide a way to estimate uncertainty by approximating the posterior distribution of weights given a set of training data. Dropout training in deep NNs approximates Bayesian inference in a deep Gaussian process and can thus be used to estimate model uncertainty. In this paper, we propose a Bayesian NN for end-to-end control that estimates uncertainty by exploiting feature map correlation during training. This approach achieves improved model fits, as well as tighter uncertainty estimates, than traditional element-wise dropout. We evaluate our algorithms on a challenging dataset collected over many different road types, times of day, and weather conditions, and demonstrate how uncertainties can be used in conjunction with a human controller in a parallel autonomous setting.


Microsoft, Nvidia work to speed up AI platform powering Cortana

PCWorld

Thanks to artificial intelligence, we have autonomous cars, chat bots, and speech recognition. Microsoft's CNTK (Cognitive Toolkit) is one among many platforms that trains computers to learn, and it's getting an upgrade. CNTK drives the Microsoft services Cortana and Skype language translation, and it boasts more than 90 percent accuracy in speech recognition tasks. Microsoft will soon release an upgraded CNTK toolkit, and one hardware maker wants to ensure the toolkit works best on its hardware. Nvidia is partnering with Microsoft to optimize its GPU development tools for CNTK.