An Intuitive Explanation of Convolutional Neural Networks

#artificialintelligence

What are Convolutional Neural Networks and why are they important? Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Networks that have proven very effective in areas such as image recognition and classification. ConvNets have been successful in identifying faces, objects and traffic signs apart from powering vision in robots and self driving cars. In Figure 1 above, a ConvNet is able to recognize scenes and the system is able to suggest relevant tags such as'bridge', 'railway' and'tennis' while Figure 2 shows an example of ConvNets being used for recognizing everyday objects, humans and animals. Lately, ConvNets have been effective in several Natural Language Processing tasks (such as sentence classification) as well. ConvNets, therefore, are an important tool for most machine learning practitioners today. However, understanding ConvNets and learning to use them for the first time can sometimes be an intimidating experience. The primary purpose of this blog post is to develop an understanding of how Convolutional Neural Networks work on images. If you are new to neural networks in general, I would recommend reading this short tutorial on Multi Layer Perceptrons to get an idea about how they work, before proceeding. Multi Layer Perceptrons are referred to as "Fully Connected Layers" in this post.


A Gentle Introduction to Convolutional Layers for Deep Learning Neural Networks

#artificialintelligence

Convolution and the convolutional layer are the major building blocks used in convolutional neural networks. A convolution is the simple application of a filter to an input that results in an activation. Repeated application of the same filter to an input results in a map of activations called a feature map, indicating the locations and strength of a detected feature in an input, such as an image. The innovation of convolutional neural networks is the ability to automatically learn a large number of filters in parallel specific to a training dataset under the constraints of a specific predictive modeling problem, such as image classification. The result is highly specific features that can be detected anywhere on input images. In this tutorial, you will discover how convolutions work in the convolutional neural network.


An Intuitive Explanation of Convolutional Neural Networks

#artificialintelligence

Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Networks that have proven very effective in areas such as image recognition and classification. ConvNets have been successful in identifying faces, objects and traffic signs apart from powering vision in robots and self driving cars. In Figure 1 above, a ConvNet is able to recognize scenes and the system is able to suggest relevant tags such as'bridge', 'railway' and'tennis' while Figure 2 shows an example of ConvNets being used for recognizing everyday objects, humans and animals. Lately, ConvNets have been effective in several Natural Language Processing tasks (such as sentence classification) as well. ConvNets, therefore, are an important tool for most machine learning practitioners today. However, understanding ConvNets and learning to use them for the first time can sometimes be an intimidating experience.


Convolutional Networks in Java - Deeplearning4j: Open-source, Distributed Deep Learning for the JVM

#artificialintelligence

Convolutional nets can be used to classify images (name what they see), cluster them by similarity (photo search), and perform object recognition within scenes. They can identify faces, individuals, street signs, eggplants, platypuses and many other aspects of visual data. Convolutional nets overlap with text analysis via optical character recognition (OCR), where the images are symbols to be transcribed, and they can also be applied to sound when it is represented visually. The efficacy of convolutional nets (ConvNets or CNNs) in image recognition is one of the main reasons why the world has woken up to deep learning. They are powering major advances in machine vision, which has obvious applications for self-driving cars, robotics, drones, and treatments for the visually impaired.


Deep Learning in a Nutshell: Core Concepts

#artificialintelligence

This post is the first in a series I'll be writing for Parallel Forall that aims to provide an intuitive and gentle introduction to deep learning. It covers the most important deep learning concepts and aims to provide an understanding of each concept rather than its mathematical and theoretical details. While the mathematical terminology is sometimes necessary and can further understanding, these posts use analogies and images whenever possible to provide easily digestible bits comprising an intuitive overview of the field of deep learning. I wrote this series in a glossary style so it can also be used as a reference for deep learning concepts. Part 1 focuses on introducing the main concepts of deep learning. Part 2 provides historical background and delves into the training procedures, algorithms and practical tricks that are used in training for deep learning.