After Mastering Go and StarCraft, DeepMind Takes on Soccer

#artificialintelligence

Having notched impressive victories over human professionals in Go, Atari Games, and most recently StarCraft 2 -- Google's DeepMind team has now turned its formidable research efforts to soccer. In a paper released last week, the UK AI company demonstrates a novel machine learning method that trains a team of AI agents to play a simulated version of "the beautiful game." Gaming, AI and soccer fans hailed DeepMind's latest innovation on social media, with comments like "You should partner with EA Sports for a FIFA environment!" Machine learning, and particularly deep reinforcement learning, has in recent years achieved remarkable success across a wide range of competitive games. Collaborative-multi-agent games however remained a relatively difficult research domain.


Amazon Echo UK release date: New speaker to make your house talk to you on sale now ahead of launch

The Independent - Tech

Nasa has announced that it has found evidence of flowing water on Mars. Scientists have long speculated that Recurring Slope Lineae -- or dark patches -- on Mars were made up of briny water but the new findings prove that those patches are caused by liquid water, which it has established by finding hydrated salts. Several hundred camped outside the London store in Covent Garden. The 6s will have new features like a vastly improved camera and a pressure-sensitive "3D Touch" display


Google just proved how unpredictable artificial intelligence can be

#artificialintelligence

Associated Press/Ahn Young-joonTV screens show the live broadcast of the Google DeepMind Challenge Match between Google's artificial intelligence program, AlphaGo, and South Korean professional Go player Lee Sedol, at the Yongsan Electronic store in Seoul, South Korea, Tuesday, March 15, 2016. Humans have been taking a beating from computers lately. The 4-1 defeat of Go grandmaster Lee Se-Dol by Google's AlphaGo artificial intelligence (AI) is only the latest in a string of pursuits in which technology has triumphed over humanity. Self-driving cars are already less accident-prone than human drivers, the TV quiz show Jeopardy! is a lost cause, and in chess humans have fallen so woefully behind computers that a recent international tournament was won by a mobile phone. There is a real sense that this month's human vs AI Go match marks a turning point.


Towards Strategic Kriegspiel Play with Opponent Modeling

AAAI Conferences

Kriesgpiel, or partially observable chess, is appealing to the AI community due to its similarity to real-world applications in which a decision maker is not a lone agent changing the environment. This paper applies the framework of Interactive POMDPs to design a competent Kriegspiel player. The novel element, compared to the existing approaches, is to model the opponent as a competent player and to predict his likely moves. The moves of our own player can then be computed based on these predictions. The problem is challenging because, first, there are many possible world states the agent has to keep track of.


The Moral Imperative of Artificial Intelligence

#artificialintelligence

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.