Goto

Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Overview of Udacity Artificial Intelligence Engineer Nanodegree, Term 1

#artificialintelligence

After finishing Udacity Deep Learning Foundation I felt that I got a good introduction to Deep Learning, but to understand things, I must dig deeper. Besides I had a guaranteed admission to Self-Driving Car Engineer, Artificial Intelligence, or Robotics Nanodegree programs.


Certificate Course on Artificial Intelligence and Deep Learning by IIT Roorkee

#artificialintelligence

Have you ever wondered how self-driving cars are running on roads or how Netflix recommends the movies which you may like or how Amazon recommends you products or how Google search gives you such an accurate results or how speech recognition in your smartphone works or how the world champion was beaten at the game of Go? Machine learning is behind these innovations. In the recent times, it has been proven that machine learning and deep learning approach to solving a problem gives far better accuracy than other approaches. This has led to a Tsunami in the area of Machine Learning. Most of the domains that were considered specializations are now being merged into Machine Learning. Every domain of computing such as data analysis, software engineering, and artificial intelligence is going to be impacted by Machine Learning.


Teaching Autonomous Driving Using a Modular and Integrated Approach

arXiv.org Artificial Intelligence

Autonomous driving is not one single technology but rather a complex system integrating many technologies, which means that teaching autonomous driving is a challenging task. Indeed, most existing autonomous driving classes focus on one of the technologies involved. This not only fails to provide a comprehensive coverage, but also sets a high entry barrier for students with different technology backgrounds. In this paper, we present a modular, integrated approach to teaching autonomous driving. Specifically, we organize the technologies used in autonomous driving into modules. This is described in the textbook we have developed as well as a series of multimedia online lectures designed to provide technical overview for each module. Then, once the students have understood these modules, the experimental platforms for integration we have developed allow the students to fully understand how the modules interact with each other. To verify this teaching approach, we present three case studies: an introductory class on autonomous driving for students with only a basic technology background; a new session in an existing embedded systems class to demonstrate how embedded system technologies can be applied to autonomous driving; and an industry professional training session to quickly bring up experienced engineers to work in autonomous driving. The results show that students can maintain a high interest level and make great progress by starting with familiar concepts before moving onto other modules.


Data Science: Supervised Machine Learning in Python

#artificialintelligence

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.