The field of probabilistic numerics (PN), loosely speaking, attempts to provide a statistical treatment of the errors and/or approximations that are made en route to the output of a deterministic numerical method, e.g. the approximation of an integral by quadrature, or the discretised solution of an ordinary or partial differential equation. This decade has seen a surge of activity in this field. In comparison with historical developments that can be traced back over more than a hundred years, the most recent developments are particularly interesting because they have been characterised by simultaneous input from multiple scientific disciplines: mathematics, statistics, machine learning, and computer science. The field has, therefore, advanced on a broad front, with contributions ranging from the building of overarching generaltheory to practical implementations in specific problems of interest. Over the same period of time, and because of increased interaction among researchers coming from different communities, the extent to which these developments were -- or were not -- presaged by twentieth-century researchers has also come to be better appreciated. Thus, the time appears to be ripe for an update of the 2014 Tübingen Manifesto on probabilistic numerics[Hennig, 2014, Osborne, 2014d,c,b,a] and the position paper[Hennig et al., 2015] to take account of the developments between 2014 and 2019, an improved awareness of the history of this field, and a clearer sense of its future directions. In this article, we aim to summarise some of the history of probabilistic perspectives on numerics (Section 2), to place more recent developments into context (Section 3), and to articulate a vision for future research in, and use of, probabilistic numerics (Section 4).

Tadic, Vladislav Z. B., Doucet, Arnaud

Using stochastic gradient search and the optimal filter derivative, it is possible to perform recursive (i.e., online) maximum likelihood estimation in a non-linear state-space model. As the optimal filter and its derivative are analytically intractable for such a model, they need to be approximated numerically. In [Poyiadjis, Doucet and Singh, Biometrika 2018], a recursive maximum likelihood algorithm based on a particle approximation to the optimal filter derivative has been proposed and studied through numerical simulations. Here, this algorithm and its asymptotic behavior are analyzed theoretically. We show that the algorithm accurately estimates maxima to the underlying (average) log-likelihood when the number of particles is sufficiently large. We also derive (relatively) tight bounds on the estimation error. The obtained results hold under (relatively) mild conditions and cover several classes of non-linear state-space models met in practice.

Dahlin, Johan, Lindsten, Fredrik, Kronander, Joel, Schön, Thomas B.

Pseudo-marginal Metropolis-Hastings (pmMH) is a powerful method for Bayesian inference in models where the posterior distribution is analytical intractable or computationally costly to evaluate directly. It operates by introducing additional auxiliary variables into the model and form an extended target distribution, which then can be evaluated point-wise. In many cases, the standard Metropolis-Hastings is then applied to sample from the extended target and the sought posterior can be obtained by marginalisation. However, in some implementations this approach suffers from poor mixing as the auxiliary variables are sampled from an independent proposal. We propose a modification to the pmMH algorithm in which a Crank-Nicolson (CN) proposal is used instead. This results in that we introduce a positive correlation in the auxiliary variables. We investigate how to tune the CN proposal and its impact on the mixing of the resulting pmMH sampler. The conclusion is that the proposed modification can have a beneficial effect on both the mixing of the Markov chain and the computational cost for each iteration of the pmMH algorithm.

Ghahramani, Zoubin, Beal, Matthew J.

Zoubin Ghahramani and Matthew J. Beal Gatsby Computational Neuroscience Unit University College London 17 Queen Square, London WC1N 3AR, England {zoubin,m.beal}Ggatsby.ucl.ac.uk Abstract We present an algorithm that infers the model structure of a mixture offactor analysers using an efficient and deterministic variational approximationto full Bayesian integration over model parameters. Thisprocedure can automatically determine the optimal number of components and the local dimensionality of each component (Le. the number of factors in each factor analyser). Alternatively it can be used to infer posterior distributions over number of components and dimensionalities. Since all parameters are integrated out the method is not prone to overfitting. Using a stochastic procedure for adding components it is possible to perform thevariational optimisation incrementally and to avoid local maxima.

Today we are going to implement a Bayesian linear regression in R from scratch and use it to forecast US GDP growth. This post is based on a very informative manual from the Bank of England on Applied Bayesian Econometrics. I have translated the original Matlab code into R since its open source and widely used in data analysis/science. My main goal in this post is to try and give people a better understanding of Bayesian statistics, some of it's advantages and also some scenarios where you might want to use it. Let's take a moment to think about why we would we even want to use Bayesian techniques in the first place.