Goto

Collaborating Authors

Large expert-curated database for benchmarking document similarity detection in biomedical literature search

#artificialintelligence

Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations.


A review of machine learning applications in wildfire science and management

arXiv.org Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.



A survey on Machine Learning-based Performance Improvement of Wireless Networks: PHY, MAC and Network layer

arXiv.org Machine Learning

This paper provides a systematic and comprehensive survey that reviews the latest research efforts focused on machine learning (ML) based performance improvement of wireless networks, while considering all layers of the protocol stack (PHY, MAC and network). First, the related work and paper contributions are discussed, followed by providing the necessary background on data-driven approaches and machine learning for non-machine learning experts to understand all discussed techniques. Then, a comprehensive review is presented on works employing ML-based approaches to optimize the wireless communication parameters settings to achieve improved network quality-of-service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis, MAC analysis and network prediction approaches, followed by subcategories within each. Finally, open challenges and broader perspectives are discussed.


A New Golden Age for Computer Architecture

Communications of the ACM

We began our Turing Lecture June 4, 201811 with a review of computer architecture since the 1960s. In addition to that review, here, we highlight current challenges and identify future opportunities, projecting another golden age for the field of computer architecture in the next decade, much like the 1980s when we did the research that led to our award, delivering gains in cost, energy, and security, as well as performance. "Those who cannot remember the past are condemned to repeat it."--George Software talks to hardware through a vocabulary called an instruction set architecture (ISA). By the early 1960s, IBM had four incompatible lines of computers, each with its own ISA, software stack, I/O system, and market niche--targeting small business, large business, scientific, and real time, respectively. IBM engineers, including ACM A.M. Turing Award laureate Fred Brooks, Jr., thought they could create a single ISA that would efficiently unify all four of these ISA bases. They needed a technical solution for how computers as inexpensive as those with 8-bit data paths and as fast as those with 64-bit data paths could share a single ISA. The data paths are the "brawn" of the processor in that they perform the arithmetic but are relatively easy to "widen" or "narrow." The greatest challenge for computer designers then and now is the "brains" of the processor--the control hardware. Inspired by software programming, computing pioneer and Turing laureate Maurice Wilkes proposed how to simplify control. Control was specified as a two-dimensional array he called a "control store." Each column of the array corresponded to one control line, each row was a microinstruction, and writing microinstructions was called microprogramming.39 A control store contains an ISA interpreter written using microinstructions, so execution of a conventional instruction takes several microinstructions. The control store was implemented through memory, which was much less costly than logic gates. The table here lists four models of the new System/360 ISA IBM announced April 7, 1964. The data paths vary by a factor of 8, memory capacity by a factor of 16, clock rate by nearly 4, performance by 50, and cost by nearly 6.