Goto

Collaborating Authors

Discriminative models for robust image classification

arXiv.org Machine Learning

A variety of real-world tasks involve the classification of images into pre-determined categories. Designing image classification algorithms that exhibit robustness to acquisition noise and image distortions, particularly when the available training data are insufficient to learn accurate models, is a significant challenge. This dissertation explores the development of discriminative models for robust image classification that exploit underlying signal structure, via probabilistic graphical models and sparse signal representations. Probabilistic graphical models are widely used in many applications to approximate high-dimensional data in a reduced complexity set-up. Learning graphical structures to approximate probability distributions is an area of active research. Recent work has focused on learning graphs in a discriminative manner with the goal of minimizing classification error. In the first part of the dissertation, we develop a discriminative learning framework that exploits the complementary yet correlated information offered by multiple representations (or projections) of a given signal/image. Specifically, we propose a discriminative tree-based scheme for feature fusion by explicitly learning the conditional correlations among such multiple projections in an iterative manner. Experiments reveal the robustness of the resulting graphical model classifier to training insufficiency.


Notes on a New Philosophy of Empirical Science

arXiv.org Machine Learning

This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.


Analysis Dictionary Learning: An Efficient and Discriminative Solution

arXiv.org Machine Learning

Yang et al. [7] used Fisher widely advocated for image classification problems. To further Information criterion in their class-specific reconstruction errors sharpen their discriminative capabilities, most state-ofthe-art to compose their approach. DL methods have additional constraints included in Besides SDL, Analysis Dictionary Learning (ADL) [8, 9] the learning stages. These various constraints, however, lead has recently been of interest on account of its fast encoding to additional computational complexity. We hence propose an and stability attributes. ADL provides a linear transformation efficient Discriminative Convolutional Analysis Dictionary of a signal to a nearly sparse representation. Inspired by Learning (DCADL) method, as a lower cost Discriminative the SDL methodology in image classification, ADL has also DL framework, to both characterize the image structures and been adapted to the supervised learning problems by promoting refine the interclass structure representations. The proposed discriminative sparse representations [10, 11]. In [10], DCADL jointly learns a convolutional analysis dictionary and Guo et al. incorporated both a topological structure and a representation a universal classifier, while greatly reducing the time complexity similarity constraint to encourage a suitable classselective in both training and testing phases, and achieving a representation for a 1-Nearest Neighbor classifier.


Euler Sparse Representation for Image Classification

AAAI Conferences

Sparse representation based classification (SRC) has gained great success in image recognition. Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which may help improve the separability and margin between nearby data points, we propose Euler SRC for image classification, which is essentially the SRC with Euler sparse representation. To be specific, it first maps the images into the complex space by Euler representation, which has a negligible effect for outliers and illumination, and then performs complex SRC with Euler representation. The major advantage of our method is that Euler representation is explicit with no increase of the image space dimensionality, thereby enabling this technique to be easily deployed in real applications. To solve Euler SRC, we present an efficient algorithm, which is fast and has good convergence. Extensive experimental results illustrate that Euler SRC outperforms traditional SRC and achieves better performance for image classification.


On effective human robot interaction based on recognition and association

arXiv.org Artificial Intelligence

Faces play a magnificent role in human robot interaction, as they do in our daily life. The inherent ability of the human mind facilitates us to recognize a person by exploiting various challenges such as bad illumination, occlusions, pose variation etc. which are involved in face recognition. But it is a very complex task in nature to identify a human face by humanoid robots. The recent literatures on face biometric recognition are extremely rich in its application on structured environment for solving human identification problem. But the application of face biometric on mobile robotics is limited for its inability to produce accurate identification in uneven circumstances. The existing face recognition problem has been tackled with our proposed component based fragmented face recognition framework. The proposed framework uses only a subset of the full face such as eyes, nose and mouth to recognize a person. It's less searching cost, encouraging accuracy and ability to handle various challenges of face recognition offers its applicability on humanoid robots. The second problem in face recognition is the face spoofing, in which a face recognition system is not able to distinguish between a person and an imposter (photo/video of the genuine user). The problem will become more detrimental when robots are used as an authenticator. A depth analysis method has been investigated in our research work to test the liveness of imposters to discriminate them from the legitimate users. The implication of the previous earned techniques has been used with respect to criminal identification with NAO robot. An eyewitness can interact with NAO through a user interface. NAO asks several questions about the suspect, such as age, height, her/his facial shape and size etc., and then making a guess about her/his face.