How to Predict Room Occupancy Based on Environmental Factors

#artificialintelligence

Small computers, such as Arduino devices, can be used within buildings to record environmental variables from which simple and useful properties can be predicted. One example is predicting whether a room or rooms are occupied based on environmental measures such as temperature, humidity, and related measures. This is a type of common time series classification problem called room occupancy classification. In this tutorial, you will discover a standard multivariate time series classification problem for predicting room occupancy using the measurements of environmental variables. A standard time series classification data set is the "Occupancy Detection" problem available on the UCI Machine Learning repository.


Improving Prediction of Office Room Occupancy Through Random Sampling

@machinelearnbot

In many cases, you may think that you have a Big Data problem, when in reality you just have a lot of data that a simple sampling can result in great accuracy. In todays blog, I decided to use office room occupancy dataset provided by"Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. The dataset provided has 6 independent variables (predictors): date with timestamp; temperature of the room in Celsius; relative humidity in percent, light in Lux; CO2 in ppm, and humidity ratio or the ratio between temperature and humidity. The occupancy is a categorical variable with 2 levels: 0 for not occupied; and 1 for occupied. The occupancy has been measured every minutes, for the period of February 11, 2015 to February 18, 2015, and its dataset size is 9,752. The question I want to investigate is can a small random sample produce performance as good as large sample? For the model, I will build a Deep Feed Forward (DFF) Learning Model.


Improving Prediction of Office Room Occupancy Through Random Sampling

@machinelearnbot

In many cases, you may think that you have a Big Data problem, when in reality you just have a lot of data that a simple sampling can result in great accuracy. In todays blog, I decided to use office room occupancy dataset provided by"Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. The dataset provided has 6 independent variables (predictors): date with timestamp; temperature of the room in Celsius; relative humidity in percent, light in Lux; CO2 in ppm, and humidity ratio or the ratio between temperature and humidity. The occupancy is a categorical variable with 2 levels: 0 for not occupied; and 1 for occupied. The occupancy has been measured every minutes, for the period of February 11, 2015 to February 18, 2015, and its dataset size is 9,752.


Adaptive Learning Agents for Sustainable Building Energy Management.

AAAI Conferences

Nearly 20% of total energy consumption in the United States is accounted for in heating, ventilation, and air conditioning (HVAC) systems. Smart sensing and adaptive energy management agents can greatly decrease the energy usage of HVAC systems in many building applications, for example by enabling the operator to shut off HVAC to unoccupied rooms. We implement a multimodal sensor agent that is nonintrusive and low-cost, combining information such as motion detection, CO2 reading, sound level, ambient light,and door state sensing. We show that in our live test bed at the USC campus, these sensor agents can be used to accurately estimate the number of occupants in each room using machine learning techniques, and that these techniques can also be applied to predict future occupancy by creating agent models of the occupants. These predictions will be used by control agents to enable the HVAC system increase its efficiency by continuously adapting to occupancy forecasts of each room.


Sensors Shape The Future Of Office BMS

@machinelearnbot

Sensor technology is not new to smart buildings. Millions of office buildings around the world today are equipped with sensor-based systems designed to conserve energy, performing simple tasks such as automatically turning the lights on and off when someone enters or leaves a room. But this is just the beginning of the smart building revolution. A truly smart building will know how the office space is being used at every single moment: how many people are in each room, how long the line is in the cafeteria, where there is a free desk, and many other aspects of the building usage. This awareness will be translated into a more cost-effective and productive working environment for the building inhabitants.