Which is your favorite Machine Learning Algorithm?

#artificialintelligence

Developed back in the 50s by Rosenblatt and colleagues, this extremely simple algorithm can be viewed as the foundation for some of the most successful classifiers today, including suport vector machines and logistic regression, solved using stochastic gradient descent. The convergence proof for the Perceptron algorithm is one of the most elegant pieces of math I've seen in ML. Most useful: Boosting, especially boosted decision trees. This intuitive approach allows you to build highly accurate ML models, by combining many simple ones. Boosting is one of the most practical methods in ML, it's widely used in industry, can handle a wide variety of data types, and can be implemented at scale.


These Are The Most Elegant, Useful Algorithms In Machine Learning

#artificialintelligence

Developed back in the 50s by Rosenblatt and colleagues, this extremely simple algorithm can be viewed as the foundation for some of the most successful classifiers today, including suport vector machines and logistic regression, solved using stochastic gradient descent. The convergence proof for the Perceptron algorithm is one of the most elegant pieces of math I've seen in ML. Most useful: Boosting, especially boosted decision trees. This intuitive approach allows you to build highly accurate ML models, by combining many simple ones. Boosting is one of the most practical methods in ML, it's widely used in industry, can handle a wide variety of data types, and can be implemented at scale.



Gaussian-binary Restricted Boltzmann Machines on Modeling Natural Image Statistics

arXiv.org Machine Learning

We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the perspective of density models. The key aspect of this analysis is to show that GRBMs can be formulated as a constrained mixture of Gaussians, which gives a much better insight into the model's capabilities and limitations. We show that GRBMs are capable of learning meaningful features both in a two-dimensional blind source separation task and in modeling natural images. Further, we show that reported difficulties in training GRBMs are due to the failure of the training algorithm rather than the model itself. Based on our analysis we are able to propose several training recipes, which allowed successful and fast training in our experiments. Finally, we discuss the relationship of GRBMs to several modifications that have been proposed to improve the model.


Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting

arXiv.org Machine Learning

Modern deep neural network models suffer from adversarial examples, i.e. confidently misclassified points in the input space. It has been shown that Bayesian neural networks are a promising approach for detecting adversarial points, but careful analysis is problematic due to the complexity of these models. Recently Gilmer et al. (2018) introduced adversarial spheres, a toy set-up that simplifies both practical and theoretical analysis of the problem. In this work, we use the adversarial sphere set-up to understand the properties of approximate Bayesian inference methods for a linear model in a noiseless setting. We compare predictions of Bayesian and non-Bayesian methods, showcasing the advantages of the former, although revealing open challenges for deep learning applications.