Collaborating Authors

Artificial Intelligence: Research Impact on Key Industries; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2020) Artificial Intelligence

The TriRhenaTech alliance presents a collection of accepted papers of the cancelled tri-national 'Upper-Rhine Artificial Inteeligence Symposium' planned for 13th May 2020 in Karlsruhe. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

A Comprehensive Review of Computer-aided Whole-slide Image Analysis: from Datasets to Feature Extraction, Segmentation, Classification, and Detection Approaches Artificial Intelligence

With the development of computer-aided diagnosis (CAD) and image scanning technology, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital pathology. Since 2004, WSI has been used more and more in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computers, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists obtain more stable and quantitative analysis results, save labor costs and improve diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning in WSI segmentation, classification, and detection are reviewed continuously. Finally, the existing methods are studied, the applicabilities of the analysis methods are analyzed, and the application prospects of the analysis methods in this field are forecasted.

Secure and Robust Machine Learning for Healthcare: A Survey Machine Learning

Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from one-dimensional heart signals to computer-aided diagnosis (CADx) using multi-dimensional medical images. Notwithstanding the impressive performance of ML/DL, there are still lingering doubts regarding the robustness of ML/DL in healthcare settings (which is traditionally considered quite challenging due to the myriad security and privacy issues involved), especially in light of recent results that have shown that ML/DL are vulnerable to adversarial attacks. In this paper, we present an overview of various application areas in healthcare that leverage such techniques from security and privacy point of view and present associated challenges. In addition, we present potential methods to ensure secure and privacy-preserving ML for healthcare applications. Finally, we provide insight into the current research challenges and promising directions for future research.

Discriminative models for robust image classification Machine Learning

A variety of real-world tasks involve the classification of images into pre-determined categories. Designing image classification algorithms that exhibit robustness to acquisition noise and image distortions, particularly when the available training data are insufficient to learn accurate models, is a significant challenge. This dissertation explores the development of discriminative models for robust image classification that exploit underlying signal structure, via probabilistic graphical models and sparse signal representations. Probabilistic graphical models are widely used in many applications to approximate high-dimensional data in a reduced complexity set-up. Learning graphical structures to approximate probability distributions is an area of active research. Recent work has focused on learning graphs in a discriminative manner with the goal of minimizing classification error. In the first part of the dissertation, we develop a discriminative learning framework that exploits the complementary yet correlated information offered by multiple representations (or projections) of a given signal/image. Specifically, we propose a discriminative tree-based scheme for feature fusion by explicitly learning the conditional correlations among such multiple projections in an iterative manner. Experiments reveal the robustness of the resulting graphical model classifier to training insufficiency.