Collaborating Authors

A Visual Guide to Self-Labelling Images


In the past year, several methods for self-supervised learning of image representations have been proposed. A recent trend in the methods is using Contrastive Learning (SimCLR, PIRL, MoCo) which have given very promising results. However, as we had seen in our survey on self-supervised learning, there exist many other problem formulations for self-supervised learning. Combine clustering and representation learning together to learn both features and labels simultaneously. A paper Self-Labelling(SeLa) presented at ICLR 2020 by Asano et al. of the Visual Geometry Group(VGG), University of Oxford has a new take on this approach and achieved the state of the art results in various benchmarks.

Domain-Agnostic Clustering with Self-Distillation Artificial Intelligence

Recent advancements in self-supervised learning have reduced the gap between supervised and unsupervised representation learning. However, most self-supervised and deep clustering techniques rely heavily on data augmentation, rendering them ineffective for many learning tasks where insufficient domain knowledge exists for performing augmentation. We propose a new self-distillation based algorithm for domain-agnostic clustering. Our method builds upon the existing deep clustering frameworks and requires no separate student model. The proposed method outperforms existing domain agnostic (augmentation-free) algorithms on CIFAR-10. We empirically demonstrate that knowledge distillation can improve unsupervised representation learning by extracting richer `dark knowledge' from the model than using predicted labels alone. Preliminary experiments also suggest that self-distillation improves the convergence of DeepCluster-v2.

CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph Representation Learning Machine Learning

Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous graph neural networks (GNN) require a large number of labeled nodes, which may not be accessible in real-world graph data. In this paper, we present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques. In CAGNN, we perform clustering on the node embeddings and update the model parameters by predicting the cluster assignments. Moreover, we observe that graphs often contain inter-class edges, which mislead the GNN model to aggregate noisy information from neighborhood nodes. We further refine the graph topology by strengthening intra-class edges and reducing node connections between different classes based on cluster labels, which better preserves cluster structures in the embedding space. We conduct comprehensive experiments on two benchmark tasks using real-world datasets. The results demonstrate the superior performance of the proposed model over existing baseline methods. Notably, our model gains over 7% improvements in terms of accuracy on node clustering over state-of-the-arts.

On Designing Good Representation Learning Models Artificial Intelligence

The goal of representation learning is different from the ultimate objective of machine learning such as decision making, it is therefore very difficult to establish clear and direct objectives for training representation learning models. It has been argued that a good representation should disentangle the underlying variation factors, yet how to translate this into training objectives remains unknown. This paper presents an attempt to establish direct training criterions and design principles for developing good representation learning models. We propose that a good representation learning model should be maximally expressive, i.e., capable of distinguishing the maximum number of input configurations. We formally define expressiveness and introduce the maximum expressiveness (MEXS) theorem of a general learning model. We propose to train a model by maximizing its expressiveness while at the same time incorporating general priors such as model smoothness. We present a conscience competitive learning algorithm which encourages the model to reach its MEXS whilst at the same time adheres to model smoothness prior. We also introduce a label consistent training (LCT) technique to boost model smoothness by encouraging it to assign consistent labels to similar samples. We present extensive experimental results to show that our method can indeed design representation learning models capable of developing representations that are as good as or better than state of the art. We also show that our technique is computationally efficient, robust against different parameter settings and can work effectively on a variety of datasets. Code available at

Knowledge Transfer in Self Supervised Learning


Self Supervised Learning is an interesting research area where the goal is to learn rich representations from unlabeled data without any human annotation. This can be achieved by creatively formulating a problem such that you use parts of the data itself as labels and try to predict that. Such formulations are called pretext tasks. For example, you can setup a pretext task to predict the color version of the image given the grayscale version. Similarly, you could remove a part of the image and train a model to predict the part from the surrounding.