Collaborating Authors

A Survey of Cross-lingual Word Embedding Models

Journal of Artificial Intelligence Research

Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent, modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.

Learning Bilingual Word Embeddings Using Lexical Definitions Artificial Intelligence

Bilingual word embeddings, which represent lexicons of different languages in a shared embedding space, are essential for supporting semantic and knowledge transfers in a variety of cross-lingual NLP tasks. Existing approaches to training bilingual word embeddings require often require predefined seed lexicons that are expensive to obtain, or parallel sentences that comprise coarse and noisy alignment. In contrast, we propose BilLex that leverages publicly available lexical definitions for bilingual word embedding learning. Without the need of predefined seed lexicons, BilLex comprises a novel word pairing strategy to automatically identify and propagate the precise fine-grained word alignment from lexical definitions. We evaluate BilLex in word-level and sentence-level translation tasks, which seek to find the cross-lingual counterparts of words and sentences respectively. BilLex significantly outperforms previous embedding methods on both tasks.

Bilingual Lexicon Induction from Non-Parallel Data with Minimal Supervision

AAAI Conferences

Building bilingual lexica from non-parallel data is a long-standing natural language processing research problem that could benefit thousands of resource-scarce languages which lack parallel data. Recent advances of continuous word representations have opened up new possibilities for this task, e.g. by establishing cross-lingual mapping between word embeddings via a seed lexicon. The method is however unreliable when there are only a limited number of seeds, which is a reasonable setting for resource-scarce languages. We tackle the limitation by introducing a novel matching mechanism into bilingual word representation learning. It captures extra translation pairs exposed by the seeds to incrementally improve the bilingual word embeddings. In our experiments, we find the matching mechanism to substantially improve the quality of the bilingual vector space, which in turn allows us to induce better bilingual lexica with seeds as few as 10.

Bilingual Distributed Word Representations from Document-Aligned Comparable Data

Journal of Artificial Intelligence Research

We propose a new model for learning bilingual word representations from non-parallel document-aligned data. Following the recent advances in word representation learning, our model learns dense real-valued word vectors, that is, bilingual word embeddings (BWEs). Unlike prior work on inducing BWEs which heavily relied on parallel sentence-aligned corpora and/or readily available translation resources such as dictionaries, the article reveals that BWEs may be learned solely on the basis of document-aligned comparable data without any additional lexical resources nor syntactic information. We present a comparison of our approach with previous state-of-the-art models for learning bilingual word representations from comparable data that rely on the framework of multilingual probabilistic topic modeling (MuPTM), as well as with distributional local context-counting models. We demonstrate the utility of the induced BWEs in two semantic tasks: (1) bilingual lexicon extraction, (2) suggesting word translations in context for polysemous words. Our simple yet effective BWE-based models significantly outperform the MuPTM-based and context-counting representation models from comparable data as well as prior BWE-based models, and acquire the best reported results on both tasks for all three tested language pairs.

Learning to Represent Bilingual Dictionaries Artificial Intelligence

Bilingual word embeddings have been widely used to capture the similarity of lexical semantics in different human languages. However, many applications, such as cross-lingual semantic search and question answering, can be largely benefited from the cross-lingual correspondence between sentences and lexicons. To bridge this gap, we propose a neural embedding model that leverages bilingual dictionaries. The proposed model is trained to map the literal word definitions to the cross-lingual target words, for which we explore with different sentence encoding techniques. To enhance the learning process on limited resources, our model adopts several critical learning strategies, including multi-task learning on different bridges of languages, and joint learning of the dictionary model with a bilingual word embedding model. Experimental evaluation focuses on two applications. The results of the cross-lingual reverse dictionary retrieval task show our model's promising ability of comprehending bilingual concepts based on descriptions, and highlight the effectiveness of proposed learning strategies in improving performance. Meanwhile, our model effectively addresses the bilingual paraphrase identification problem and significantly outperforms previous approaches.