Collaborating Authors

Best Python Libraries for Machine Learning and Deep Learning


To understand how to accomplish a specific task in TensorFlow, you can refer to the TensorFlow tutorials. Keras is one of the most popular and open-source neural network libraries for Python. Initially designed by a Google engineer for ONEIROS, short for Open-Ended Neuro Electronic Intelligent Robot Operating System, Keras was soon supported in TensorFlow's core library making it accessible on top of TensorFlow.

Top 30 Python Libraries for Machine Learning


In this article, you'll see top 30 Python libraries for Machine Learning. In this article, you'll see top 30 Python libraries for Machine Learning. Today, Python is one of the most popular programming languages and it has replaced many languages in the industry. There are various reasons for its popularity and one of them is that python has a large collection of libraries. Python is one of the most widely used languages by Data Scientists and Machine Learning experts across the world. Though there is no shortage of alternatives in the form of languages like R, Julia and others, python has steadily and rightfully gained popularity. Similar to the Google Trends shown above(the plot is prepared using matplotlib and pytrends), confidence is visible year over year with python featuring way above its peers in the StackOverflow surveys for 2017 and 2018. These trends/surveys are the consequences of ease of use, shorter learning curve, widespread usage, strong community, large number of libraries covering depth and breadth of a number of research and application areas. The amazing popularity might make one think that python is the gold standard for Machine Learning.

Machine learning python


With modern technology, such questions are no longer bound to creative conjecture. You have just found Keras. Today i will give a brief introduction over this topic which created headache for me when i was learning this. All video and text tutorials are free. I use Anaconda package that almost wraps up all the Python packages including Jupyter notebook.

Top Python Libraries for Data Science


Statsmodels is an open-source statistics-driven module that offers various classes and functions to the many statistical models available for statistical analysis and exploration of data. The module covers a vast number of models ranging from Linear Regression, Discrete Models, Time Series Analysis, Survival Analysis, and many other miscellaneous models.

Top 15 Python Libraries For Data Science & Best Tutorials To Learn Them


Python is the most widely used programming language today. When it comes to solving data science tasks and challenges, Python never ceases to surprise its users. Most data scientists are already leveraging the power of Python programming every day. Python is an easy-to-learn, easy-to-debug, widely used, object-oriented, open-source, high-performance language, and there are many more benefits to Python programming. Python has been built with extraordinary Python libraries for data science that are used by programmers every day in solving problems.Here today, We have curated a list of best 15 Python libraries that helps in Data Science and its periphery, when to use them, their advantages and best tutorials to learn them. Pandas stand for Python Data Analysis Library. Pandas is the best tool for data wrangling or munging.