Oversampling for Imbalanced Learning Based on K-Means and SMOTE

arXiv.org Machine Learning

Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.

Credit risk prediction in an imbalanced social lending environment

arXiv.org Machine Learning

Credit risk prediction is an effective way of evaluating whether a potential borrower will repay a loan, particularly in peer-to-peer lending where class imbalance problems are prevalent. However, few credit risk prediction models for social lending consider imbalanced data and, further, the best resampling technique to use with imbalanced data is still controversial. In an attempt to address these problems, this paper presents an empirical comparison of various combinations of classifiers and resampling techniques within a novel risk assessment methodology that incorporates imbalanced data. The credit predictions from each combination are evaluated with a G-mean measure to avoid bias towards the majority class, which has not been considered in similar studies. The results reveal that combining random forest and random under-sampling may be an effective strategy for calculating the credit risk associated with loan applicants in social lending markets.

Using SMOTEBoost and RUSBoost to deal with class imbalance


Binary classification with strong class imbalance can be found in many real-world classification problems. From trying to predict events such as network intrusion and bank fraud to a patient's medical diagnosis, the goal in these cases is to be able to identify instances of the minority class -- that is, the class that is underrepresented in the dataset. This, of course, presents a big challenge as most predictive models tend to ignore the more critical minority class while deceptively giving high accuracy results by favoring the majority class. Several techniques have been used to get around the problem of class imbalance, including different sampling methods and modeling algorithms. Examples of sampling methods include adding data samples to the minority class by either duplicating the data or generating synthetic minority samples (oversampling), or randomly removing majority class data to produce a more balanced data distribution (undersampling).

Survey of resampling techniques for improving classification performance in unbalanced datasets

arXiv.org Machine Learning

A number of classification problems need to deal with data imbalance between classes. Often it is desired to have a high recall on the minority class while maintaining a high precision on the majority class. In this paper, we review a number of resampling techniques proposed in literature to handle unbalanced datasets and study their effect on classification performance.

CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

arXiv.org Machine Learning

Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater interest than the majority class instances in real-life applications. Recently, several techniques based on sampling methods (under-sampling of the majority class and over-sampling the minority class), cost-sensitive learning methods, and ensemble learning have been used in the literature for classifying imbalanced datasets. In this paper, we introduce a new clustering-based under-sampling approach with boosting (AdaBoost) algorithm, called CUSBoost, for effective imbalanced classification. The proposed algorithm provides an alternative to RUSBoost (random under-sampling with AdaBoost) and SMOTEBoost (synthetic minority over-sampling with AdaBoost) algorithms. We evaluated the performance of CUSBoost algorithm with the state-of-the-art methods based on ensemble learning like AdaBoost, RUSBoost, SMOTEBoost on 13 imbalance binary and multi-class datasets with various imbalance ratios. The experimental results show that the CUSBoost is a promising and effective approach for dealing with highly imbalanced datasets.