Goto

Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Eighth grader builds IBM Watson-powered AI chatbot for students making college plans

#artificialintelligence

While her peers reveled in an unprecedented virtual school year, the self-described "technology enthusiast," Harita Suresh, 13, was bored. She decided on an online course and settled on IBM Skills Network's "AI chatbots without programming." She lacked experience with artificial intelligence, but was eager to learn through the self-paced course. Harita is more than a little familiar with tech, "I have been interested in technology since I was 5," she said. "My first coding challenge was the Lightbot Hour of Code. I was fascinated that the code I wrote could control the actions of the characters on screen. Since then, I pursued coding on multiple platforms like code.org, The more I learned about tech, the more I wanted to know. In fifth grade, I took a Python programming course offered by Georgia Tech."


Neural Educational Recommendation Engine (NERE)

arXiv.org Machine Learning

Quizlet is the most popular online learning tool in the United States, and is used by over 2/3 of high school students, and 1/2 of college students. With more than 95% of Quizlet users reporting improved grades as a result, the platform has become the de-facto tool used in millions of classrooms. In this paper, we explore the task of recommending suitable content for a student to study, given their prior interests, as well as what their peers are studying. We propose a novel approach, i.e. Neural Educational Recommendation Engine (NERE), to recommend educational content by leveraging student behaviors rather than ratings. We have found that this approach better captures social factors that are more aligned with learning. NERE is based on a recurrent neural network that includes collaborative and content-based approaches for recommendation, and takes into account any particular student's speed, mastery, and experience to recommend the appropriate task. We train NERE by jointly learning the user embeddings and content embeddings, and attempt to predict the content embedding for the final timestamp. We also develop a confidence estimator for our neural network, which is a crucial requirement for productionizing this model. We apply NERE to Quizlet's proprietary dataset, and present our results. We achieved an R^2 score of 0.81 in the content embedding space, and a recall score of 54% on our 100 nearest neighbors. This vastly exceeds the recall@100 score of 12% that a standard matrix-factorization approach provides. We conclude with a discussion on how NERE will be deployed, and position our work as one of the first educational recommender systems for the K-12 space.


Eighth grader builds IBM Watson-powered AI chatbot for students making college plans

#artificialintelligence

While her peers reveled in an unprecedented virtual school year, the self-described "technology enthusiast," Harita Suresh, 13, was bored. She decided on an online course and settled on IBM Skills Network's "AI chatbots without programming." She lacked experience with artificial intelligence, but was eager to learn through the self-paced course. Harita is more than a little familiar with tech, "I have been interested in technology since I was 5," she said. "My first coding challenge was the Lightbot Hour of Code. I was fascinated that the code I wrote could control the actions of the characters on screen. Since then, I pursued coding on multiple platforms like code.org, The more I learned about tech, the more I wanted to know. In fifth grade, I took a Python programming course offered by Georgia Tech."


The Future of Jobs and Jobs Training

#artificialintelligence

Machines are eating humans' jobs talents. And it's not just about jobs that are repetitive and low-skill. Automation, robotics, algorithms and artificial intelligence (AI) in recent times have shown they can do equal or sometimes even better work than humans who are dermatologists, insurance claims adjusters, lawyers, seismic testers in oil fields, sports journalists and financial reporters, crew members on guided-missile destroyers, hiring managers, psychological testers, retail salespeople, and border patrol agents. Moreover, there is growing anxiety that technology developments on the near horizon will crush the jobs of the millions who drive cars and trucks, analyze medical tests and data, perform middle management chores, dispense medicine, trade stocks and evaluate markets, fight on battlefields, perform government functions, and even replace those who program software – that is, the creators of algorithms. People will create the jobs of the future, not simply train for them, ...