Collaborating Authors

High-Fidelity Image Generation With Fewer Labels Machine Learning

Deep generative models are becoming a cornerstone of modern machine learning. Recent work on conditional generative adversarial networks has shown that learning complex, high-dimensional distributions over natural images is within reach. While the latest models are able to generate high-fidelity, diverse natural images at high resolution, they rely on a vast quantity of labeled data. In this work we demonstrate how one can benefit from recent work on self- and semi-supervised learning to outperform state-of-the-art (SOTA) on both unsupervised ImageNet synthesis, as well as in the conditional setting. In particular, the proposed approach is able to match the sample quality (as measured by FID) of the current state-of-the art conditional model BigGAN on ImageNet using only 10% of the labels and outperform it using 20% of the labels.

Unsupervised Domain Adaptation through Self-Supervision Machine Learning

This paper addresses unsupervised domain adaptation, the setting where labeled training data is available on a source domain, but the goal is to have good performance on a target domain with only unlabeled data. Like much of previous work, we seek to align the learned representations of the source and target domains while preserving discriminability. The way we accomplish alignment is by learning to perform auxiliary self-supervised task(s) on both domains simultaneously. Each self-supervised task brings the two domains closer together along the direction relevant to that task. Training this jointly with the main task classifier on the source domain is shown to successfully generalize to the unlabeled target domain. The presented objective is straightforward to implement and easy to optimize. We achieve state-of-the-art results on four out of seven standard benchmarks, and competitive results on segmentation adaptation. We also demonstrate that our method composes well with another popular pixel-level adaptation method. Visual distribution shifts are fundamental to our constantly evolving world. We humans face them all the time, e.g. when we navigate a foreign city, read text in a new font, or recognize objects in an environment we have never encountered before. These real-world challenges to the human visual perception have direct parallels in computer vision.

Semi-Supervised Learning with Scarce Annotations Machine Learning

While semi-supervised learning (SSL) algorithms provide an efficient way to make use of both labelled and unlabelled data, they generally struggle when the number of annotated samples is very small. In this work, we consider the problem of SSL multi-class classification with very few labelled instances. We introduce two key ideas. The first is a simple but effective one: we leverage the power of transfer learning among different tasks and self-supervision to initialize a good representation of the data without making use of any label. The second idea is a new algorithm for SSL that can exploit well such a pre-trained representation. The algorithm works by alternating two phases, one fitting the labelled points and one fitting the unlabelled ones, with carefully-controlled information flow between them. The benefits are greatly reducing overfitting of the labelled data and avoiding issue with balancing labelled and unlabelled losses during training. We show empirically that this method can successfully train competitive models with as few as 10 labelled data points per class. More in general, we show that the idea of bootstrapping features using self-supervised learning always improves SSL on standard benchmarks. We show that our algorithm works increasingly well compared to other methods when refining from other tasks or datasets.

Semi-Supervised Learning by Augmented Distribution Alignment Machine Learning

In this work, we propose a simple yet effective semi-supervised learning approach called Augmented Distribution Alignment. We reveal that an essential sampling bias exists in semi-supervised learning due to the limited amount of labeled samples, which often leads to a considerable empirical distribution mismatch between labeled data and unlabeled data. To this end, we propose to align the empirical distributions of labeled and unlabeled data to alleviate the bias. On one hand, we adopt an adversarial training strategy to minimize the distribution distance between labeled and unlabeled data as inspired by domain adaptation works. On the other hand, to deal with the small sample size issue of labeled data, we also propose a simple interpolation strategy to generate pseudo training samples. Those two strategies can be easily implemented into existing deep neural networks. We demonstrate the effectiveness of our proposed approach on the benchmark SVHN and CIFAR10 datasets, on which we achieve new state-of-the-art error rates of $3.54\%$ and $10.09\%$, respectively. Our code will be available at \url{}.

Self-Supervised GAN to Counter Forgetting Machine Learning

GANs involve training two networks in an adversarial game, where each network's task depends on its adversary. Recently, several works have framed GAN training as an online or continual learning problem [1-6]. We focus on the discriminator, which must perform classification under an (adversarially) shifting data distribution. When trained on sequential tasks, neural networks exhibit forgetting. For GANs, discriminator forgetting leads to training instability [1]. To counter forgetting, we encourage the discriminator to maintain useful representations by adding a self-supervision. Conditional GANs have a similar effect using labels. However, our self-supervised GAN does not require labels, and closes the performance gap between conditional and unconditional models. We show that, in doing so, the self-supervised discriminator learns better representations than regular GANs.