AAAI Conferences

In the past decades, Spectral Clustering (SC) has become one of the most effective clustering approaches. Although it has been widely used, one significant drawback of SC is its expensive computation cost. Many efforts have been devoted to accelerating SC algorithms and promising results have been achieved. However, most of the existing algorithms rely on the assumption that data can be stored in the computer memory. When data cannot fit in the memory, these algorithms will suffer severe performance degradations.

Optimal Schedules for Parallelizing Anytime Algorithms: The Case of Shared Resources

Journal of Artificial Intelligence Research

The performance of anytime algorithms can be improved by simultaneously solving several instances of algorithm-problem pairs. These pairs may include different instances of a problem (such as starting from a different initial state), different algorithms (if several alternatives exist), or several runs of the same algorithm (for non-deterministic algorithms). In this paper we present a methodology for designing an optimal scheduling policy based on the statistical characteristics of the algorithms involved. We formally analyze the case where the processes share resources (a single-processor model), and provide an algorithm for optimal scheduling. We analyze, theoretically and empirically, the behavior of our scheduling algorithm for various distribution types.

How algorithms shape our world


We live in a world run by algorithms, computer programs that make decisions or solve problems for us. In this riveting, funny talk, Kevin Slavin shows how modern algorithms determine stock prices, espionage tactics, even the movies you watch. But, he asks: If we depend on complex algorithms to manage our daily decisions -- when do we start to lose control?

A kNN algorithm with a unfixed k? • /r/MachineLearning


I am wondering if there is any research out their about an kNN classifier with a optimized algorithm where a function is trained upon the training data set that maps a point to a value of k. Then, when the algorithm needs to classify a new point, it first looks for the nearest point in this trained function to find what value k it should use. Any thoughts or links to research like this?

Extending Gossip Algorithms to Distributed Estimation of U-statistics

Neural Information Processing Systems

Efficient and robust algorithms for decentralized estimation in networks are essential to many distributed systems. Whereas distributed estimation of sample mean statistics has been the subject of a good deal of attention, computation of U-statistics, relying on more expensive averaging over pairs of observations, is a less investigated area. Yet, such data functionals are essential to describe global properties of a statistical population, with important examples including Area Under the Curve, empirical variance, Gini mean difference and within-cluster point scatter. This paper proposes new synchronous and asynchronous randomized gossip algorithms which simultaneously propagate data across the network and maintain local estimates of the U-statistic of interest. We establish convergence rate bounds of O(1 / t) and O(log t / t) for the synchronous and asynchronous cases respectively, where t is the number of iterations, with explicit data and network dependent terms.