Goto

Collaborating Authors

AI Beats Dermatologists in Diagnosing Nail Fungus

IEEE Spectrum Robotics

But a deep neural network approach managed to beat 42 dermatology experts in diagnosing a common nail fungus that affects about 35 million Americans each year.



Artificial intelligence used to identify skin cancer Stanford News

#artificialintelligence

It's scary enough making a doctor's appointment to see if a strange mole could be cancerous. Imagine, then, that you were in that situation while also living far away from the nearest doctor, unable to take time off work and unsure you had the money to cover the cost of the visit. In a scenario like this, an option to receive a diagnosis through your smartphone could be lifesaving. A dermatologist uses a dermatoscope, a type of handheld microscope, to look at skin. Computer scientists at Stanford have created an artificially intelligent diagnosis algorithm for skin cancer that matched the performance of board-certified dermatologists.


Artificial intelligence used to identify skin cancer Stanford News

#artificialintelligence

It's scary enough making a doctor's appointment to see if a strange mole could be cancerous. Imagine, then, that you were in that situation while also living far away from the nearest doctor, unable to take time off work and unsure you had the money to cover the cost of the visit. In a scenario like this, an option to receive a diagnosis through your smartphone could be lifesaving. A dermatologist uses a dermatoscope, a type of handheld microscope, to look at skin. Computer scientists at Stanford have created an artificially intelligent diagnosis algorithm for skin cancer that matched the performance of board-certified dermatologists.


Artificial intelligence algorithms appear to be better at detecting skin cancer

#artificialintelligence

Researchers have shown for the first time that a form of artificial intelligence or machine learning known as a deep learning convolutional neural network (CNN) is better than experienced dermatologists at detecting skin cancer. In a study published in the leading cancer journal Annals of Oncology today (Tuesday), researchers in Germany, the USA and France trained a CNN to identify skin cancer by showing it more than 100,000 images of malignant melanomas (the most lethal form of skin cancer), as well as benign moles (or nevi). They compared its performance with that of 58 international dermatologists and found that the CNN missed fewer melanomas and misdiagnosed benign moles less often as malignant than the group of dermatologists. A CNN is an artificial neural network inspired by the biological processes at work when nerve cells (neurons) in the brain are connected to each other and respond to what the eye sees. The CNN is capable of learning fast from images that it "sees" and teaching itself from what it has learned to improve its performance (a process known as machine learning).