Personalized "deep learning" equips robots for autism therapy

#artificialintelligence

Children with autism spectrum conditions often have trouble recognizing the emotional states of people around them -- distinguishing a happy face from a fearful face, for instance. To remedy this, some therapists use a kid-friendly robot to demonstrate those emotions and to engage the children in imitating the emotions and responding to them in appropriate ways. This type of therapy works best, however, if the robot can smoothly interpret the child's own behavior -- whether he or she is interested and excited or paying attention -- during the therapy. Researchers at the MIT Media Lab have now developed a type of personalized machine learning that helps robots estimate the engagement and interest of each child during these interactions, using data that are unique to that child. Armed with this personalized "deep learning" network, the robots' perception of the children's responses agreed with assessments by human experts, with a correlation score of 60 percent, the scientists report June 27 in Science Robotics.


Personalized 'deep learning' equips robots for autism therapy: Machine learning network offers personalized estimates of children's behavior

#artificialintelligence

This type of therapy works best, however, if the robot can smoothly interpret the child's own behavior -- whether he or she is interested and excited or paying attention -- during the therapy. Researchers at the MIT Media Lab have now developed a type of personalized machine learning that helps robots estimate the engagement and interest of each child during these interactions, using data that are unique to that child. Armed with this personalized "deep learning" network, the robots' perception of the children's responses agreed with assessments by human experts, with a correlation score of 60 percent, the scientists report June 27 in Science Robotics. It can be challenging for human observers to reach high levels of agreement about a child's engagement and behavior. Their correlation scores are usually between 50 and 55 percent.


Predicting Treatment Initiation from Clinical Time Series Data via Graph-Augmented Time-Sensitive Model

arXiv.org Machine Learning

Many computational models were proposed to extract temporal patterns from clinical time series for each patient and among patient group for predictive healthcare. However, the common relations among patients (e.g., share the same doctor) were rarely considered. In this paper, we represent patients and clinicians relations by bipartite graphs addressing for example from whom a patient get a diagnosis. We then solve for the top eigenvectors of the graph Laplacian, and include the eigenvectors as latent representations of the similarity between patient-clinician pairs into a time-sensitive prediction model. We conducted experiments using real-world data to predict the initiation of first-line treatment for Chronic Lymphocytic Leukemia (CLL) patients. Results show that relational similarity can improve prediction over multiple baselines, for example a 5% incremental over long-short term memory baseline in terms of area under precision-recall curve.


Leading Ai Applications In Medical Diagnostics

#artificialintelligence

This entry was posted on May 21, 2018 at 7:54 am and is filed under Business, HealthCare, Thoughts. You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site. Create a free website or blog at WordPress.com.


Identification and Visualization of the Underlying Independent Causes of the Diagnostic of Diabetic Retinopathy made by a Deep Learning Classifier

arXiv.org Machine Learning

Interpretability is a key factor in the design of automatic classifiers for medical diagnosis. Deep learning models have been proven to be a very effective classification algorithm when trained in a supervised way with enough data. The main concern is the difficulty of inferring rationale interpretations from them. Different attempts have been done in last years in order to convert deep learning classifiers from high confidence statistical black box machines into self-explanatory models. In this paper we go forward into the generation of explanations by identifying the independent causes that use a deep learning model for classifying an image into a certain class. We use a combination of Independent Component Analysis with a Score Visualization technique. In this paper we study the medical problem of classifying an eye fundus image into 5 levels of Diabetic Retinopathy. We conclude that only 3 independent components are enough for the differentiation and correct classification between the 5 disease standard classes. We propose a method for visualizing them and detecting lesions from the generated visual maps.