Goto

Collaborating Authors


A Novel Approach for Detection and Ranking of Trendy and Emerging Cyber Threat Events in Twitter Streams

arXiv.org Machine Learning

We present a new machine learning and text information extraction approach to detection of cyber threat events in Twitter that are novel (previously non-extant) and developing (marked by significance with respect to similarity with a previously detected event). While some existing approaches to event detection measure novelty and trendiness, typically as independent criteria and occasionally as a holistic measure, this work focuses on detecting both novel and developing events using an unsupervised machine learning approach. Furthermore, our proposed approach enables the ranking of cyber threat events based on an importance score by extracting the tweet terms that are characterized as named entities, keywords, or both. We also impute influence to users in order to assign a weighted score to noun phrases in proportion to user influence and the corresponding event scores for named entities and keywords. To evaluate the performance of our proposed approach, we measure the efficiency and detection error rate for events over a specified time interval, relative to human annotator ground truth.


Adversarial Security Attacks and Perturbations on Machine Learning and Deep Learning Methods

arXiv.org Machine Learning

Cybersecurity also benefits from ML and DL methods for various types of applications. These methods however are susceptible to security attacks. The adversaries can exploit the training and testing data of the learning models or can explore the workings of those models for launching advanced future attacks. The topic of adversarial security attacks and perturbations within the ML and DL domains is a recent exploration and a great interest is expressed by the security researchers and practitioners. The literature covers different adversarial security attacks and perturbations on ML and DL methods and those have their own presentation styles and merits. A need to review and consolidate knowledge that is comprehending of this increasingly focused and growing topic of research; however, is the current demand of the research communities. In this review paper, we specifically aim to target new researchers in the cybersecurity domain who may seek to acquire some basic knowledge on the machine learning and deep learning models and algorithms, as well as some of the relevant adversarial security attacks and perturbations.


An Anomaly Contribution Explainer for Cyber-Security Applications

arXiv.org Machine Learning

--In this paper we introduce Anomaly Contribution Explainer or ACE, a tool to explain security anomaly detection models in terms of the model features through a regression framework, and its variant, ACE-KL, which highlights the important anomaly contributors. ACE and ACE-KL provide insights in diagnosing which attributes significantly contribute to an anomaly by building a specialized linear model to locally approximate the anomaly score that a black-box model generates. We conducted experiments with these anomaly detection models to detect security anomalies on both synthetic data and real data. In particular, we evaluate performance on three public data sets: CERT insider threat, netflow logs, and Android malware. The experimental results are encouraging: our methods consistently identify the correct contributing feature in the synthetic data where ground truth is available; similarly, for real data sets, our methods point a security analyst in the direction of the underlying causes of an anomaly, including in one case leading to the discovery of previously overlooked network scanning activity. We have made our source code publicly available. Cyber-security is a key concern for both private and public organizations, given the high cost of security compromises and attacks; malicious cyber-activity cost the U.S. economy between $57 billion and $109 billion in 2016 [1]. As a result, spending on security research and development, and security products and services to detect and combat cyber-attacks has been increasing [2]. Organizations produce large amounts of network, host and application data that can be used to gain insights into cyber-security threats, misconfigurations, and network operations. While security domain experts can manually sift through some amount of data to spot attacks and understand them, it is virtually impossible to do so at scale, considering that even a medium sized enterprise can produce terabytes of data in a few hours.


Machine Learning in IoT Security: Current Solutions and Future Challenges

arXiv.org Machine Learning

The future Internet of Things (IoT) will have a deep economical, commercial and social impact on our lives. The participating nodes in IoT networks are usually resource-constrained, which makes them luring targets for cyber attacks. In this regard, extensive efforts have been made to address the security and privacy issues in IoT networks primarily through traditional cryptographic approaches. However, the unique characteristics of IoT nodes render the existing solutions insufficient to encompass the entire security spectrum of the IoT networks. This is, at least in part, because of the resource constraints, heterogeneity, massive real-time data generated by the IoT devices, and the extensively dynamic behavior of the networks. Therefore, Machine Learning (ML) and Deep Learning (DL) techniques, which are able to provide embedded intelligence in the IoT devices and networks, are leveraged to cope with different security problems. In this paper, we systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks. We then shed light on the gaps in these security solutions that call for ML and DL approaches. We also discuss in detail the existing ML and DL solutions for addressing different security problems in IoT networks. At last, based on the detailed investigation of the existing solutions in the literature, we discuss the future research directions for ML- and DL-based IoT security.