Goto

Collaborating Authors

AWS expands on SageMaker capabilities with end-to-end features for machine learning – TechCrunch

#artificialintelligence

Nearly three years after it was first launched, Amazon Web Services' SageMaker platform has gotten a significant upgrade in the form of new features making it easier for developers to automate and scale each step of the process to build new automation and machine learning capabilities, the company said. As machine learning moves into the mainstream, business units across organizations will find applications for automation, and AWS is trying to make the development of those bespoke applications easier for its customers. "One of the best parts of having such a widely-adopted service like SageMaker is that we get lots of customer suggestions which fuel our next set of deliverables," said AWS vice president of machine learning, Swami Sivasubramanian. "Today, we are announcing a set of tools for Amazon SageMaker that makes it much easier for developers to build end-to-end machine learning pipelines to prepare, build, train, explain, inspect, monitor, debug and run custom machine learning models with greater visibility, explainability, and automation at scale." Already companies like 3M, ADP, AstraZeneca, Avis, Bayer, Capital One, Cerner, Domino's Pizza, Fidelity Investments, Lenovo, Lyft, T-Mobile, and Thomson Reuters are using SageMaker tools in their own operations, according to AWS.


Automating machine learning lifecycle with AWS

#artificialintelligence

Machine Learning and data science life cycle involved several phases. Each phase requires complex tasks executed by different teams, as explained by Microsoft in this article. To solve the complexity of these tasks, cloud providers like Amazon, Microsoft, and Google services automate these tasks that speed up end to end the machine learning lifecycle. This article explains Amazon Web Services (AWS) cloud services used in different tasks in a machine learning life cycle. To better understand each service, I will write a brief description, a use case, and a link to the documentation. In this article, machine learning lifecycle can be replaced with data science lifecycle.


An Introduction to Amazon SageMaker

#artificialintelligence

Amazon SageMaker helps data scientists and inventors to prepare, make, train, and deploy high- quality machine learning models by bringing together a broad set of capabilities purpose- erected for machine learning. Amazon SageMaker make available a set of solutions for the most common use cases that may be deployed readily with just a few clicks to make it easier to grow started. Amazon SageMaker is a completely accomplished machine learning service. Data scientists and developers may speedily and easily build and train machine learning models with SageMaker. They can straight deploy them into a production-ready hosted environment.


Integrate Amazon SageMaker Data Wrangler with MLOps workflows

#artificialintelligence

As enterprises move from running ad hoc machine learning (ML) models to using AI/ML to transform their business at scale, the adoption of ML Operations (MLOps) becomes inevitable. As shown in the following figure, the ML lifecycle begins with framing a business problem as an ML use case followed by a series of phases, including data preparation, feature engineering, model building, deployment, continuous monitoring, and retraining. For many enterprises, a lot of these steps are still manual and loosely integrated with each other. Therefore, it's important to automate the end-to-end ML lifecycle, which enables frequent experiments to drive better business outcomes. Data preparation is one of the crucial steps in this lifecycle, because the ML model's accuracy depends on the quality of the training dataset.


Your guide to AI and ML at AWS re:Invent 2021

#artificialintelligence

Only 9 days until AWS re:Invent 2021, and we're very excited to share some highlights you might enjoy this year. The AI/ML team has been working hard to serve up some amazing content and this year, we have more session types for you to enjoy. Back in person, we now have chalk talks, workshops, builders' sessions, and our traditional breakout sessions. Last year we hosted the first-ever machine learning (ML) keynote, and we are continuing the tradition. We also have more interactive and fun events happening with our AWS DeepRacer League and AWS BugBust Challenge.