Optimal strategies for the control of autonomous vehicles in data assimilation

arXiv.org Machine Learning

We propose a method to compute optimal control paths for autonomous vehicles deployed for the purpose of inferring a velocity field. In addition to being advected by the flow, the vehicles are able to effect a fixed relative speed with arbitrary control over direction. It is this direction that is used as the basis for the locally optimal control algorithm presented here, with objective formed from the variance trace of the expected posterior distribution. We present results for linear flows near hyperbolic fixed points.

Autonomous Search and Tracking via Temporal Planning

AAAI Conferences

Search And Tracking (SAT) is the problem of searching for a mobile target and tracking it after it is found. As this problem has important applications in search-and-rescue and surveillance operations, recently there has been increasing interest in equipping unmanned aerial vehicles (UAVs) with autonomous SAT capabilities. State-of-the-art approaches to SAT rely on estimating the probability density function of the target's state and solving the search control problem in a greedy fashion over a short planning horizon (typically, a one-step lookahead). These techniques suffer high computational cost, making them unsuitable for complex problems. In this paper, we propose a novel approach to SAT, which allows us to handle big geographical areas, complex target motion models and long-term operations. Our solution is to track the target reactively while it is in view and to plan a recovery strategy that relocates the target every time it is lost, using a high-performing automated planning tool. The planning problem consists of deciding where to search and which search patterns to use in order to maximise the likelihood of recovering the target. We show experimental results demonstrating the potential of our approach.

Building emotionally aware cars on the path to full autonomy


Recent innovations around the autonomous car have shaken up the automotive industry. Manufacturers and their suppliers are all accelerating their work on the cars of the future, both regular human-operated cars as well as driverless or semi-autonomous vehicles. But beyond just issues of autonomy, these cars of the future are undergoing a fundamental shift in human-machine interaction. Consumers today crave more relational and conversational interactions with devices, as evidenced by the popularity of chatbots and virtual assistants like Siri and Alexa – and the automotive industry has taken notice. As such, next-generation cars are emerging as advanced artificial intelligence (AI) systems that will power an entirely new automotive experience in which cars will become conversational interfaces between the driver, passengers, the vehicle itself and its controls -- all connected to the IoT and mobile devices we use.

Should you become a data scientist?


There is no shortage of articles attempting to lay out a step-by-step process of how to become a data scientist. Are you a recent graduate? Do this… Are you changing careers? Do that… And make sure you're focusing on the top skills: coding, statistics, machine learning, storytelling, databases, big data… Need resources? Check out Andrew Ng's Coursera ML course, …". Although these are important things to consider once you have made up your mind to pursue a career in data science, I hope to answer the question that should come before all of this. It's the question that should be on every aspiring data scientist's mind: "should I become a data scientist?" This question addresses the why before you try to answer the how. What is it about the field that draws you in and will keep you in it and excited for years to come? In order to answer this question, it's important to understand how we got here and where we are headed. Because by having a full picture of the data science landscape, you can determine whether data science makes sense for you. Before the convergence of computer science, data technology, visualization, mathematics, and statistics into what we call data science today, these fields existed in siloes -- independently laying the groundwork for the tools and products we are now able to develop, things like: Oculus, Google Home, Amazon Alexa, self-driving cars, recommendation engines, etc. The foundational ideas have been around for decades... early scientists dating back to the pre-1800s, coming from wide range of backgrounds, worked on developing our first computers, calculus, probability theory, and algorithms like: CNNs, reinforcement learning, least squares regression. With the explosion in data and computational power, we are able to resurrect these decade old ideas and apply them to real-world problems. In 2009 and 2012, articles were published by McKinsey and the Harvard Business Review, hyping up the role of the data scientist, showing how they were revolutionizing the way businesses are operating and how they would be critical to future business success. They not only saw the advantage of a data-driven approach, but also the importance of utilizing predictive analytics into the future in order to remain competitive and relevant. Around the same time in 2011, Andrew Ng came out with a free online course on machine learning, and the curse of AI FOMO (fear of missing out) kicked in. Companies began the search for highly skilled individuals to help them collect, store, visualize and make sense of all their data. "You want the title and the high pay?