Here at Udacity, we are tremendously excited to announce the kick-off of the second term of our Artificial Intelligence Nanodegree program. Because we are able to provide a depth of education that is commensurate with university education; because we are bridging the gap between universities and industry by providing you with hands-on projects and partnering with the top industries in the field; and last but certainly not least, because we are able to bring this education to many more people across the globe, at a cost that makes a top-notch AI education realistic for all aspiring learners. During the first term, you've enjoyed learning about Game Playing Agents, Simulated Annealing, Constraint Satisfaction, Logic and Planning, and Probabilistic AI from some of the biggest names in the field: Sebastian Thrun, Peter Norvig, and Thad Starner. Term 2 will be focused on one of the cutting-edge advancements of AI -- Deep Learning. In this Term, you will learn about the foundations of neural networks, understand how to train these neural networks with techniques such as gradient descent and backpropagation, and learn different types of architectures that make neural networks work for a variety of different applications.

Like the course I just released on Hidden Markov Models, Recurrent Neural Networks are all about learning sequences - but whereas Markov Models are limited by the Markov assumption, Recurrent Neural Networks are not - and as a result, they are more expressive, and more powerful than anything we've seen on tasks that we haven't made progress on in decades. So what's going to be in this course and how will it build on the previous neural network courses and Hidden Markov Models? In the first section of the course we are going to add the concept of time to our neural networks. I'll introduce you to the Simple Recurrent Unit, also known as the Elman unit. We are going to revisit the XOR problem, but we're going to extend it so that it becomes the parity problem - you'll see that regular feedforward neural networks will have trouble solving this problem but recurrent networks will work because the key is to treat the input as a sequence.

Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. We will use libraries such as scikit-learn, e1071, randomForest, c50, xgboost, and so on.We will discuss the application of frequently used algorithms on various domain problems, using both Python and R programming.It focuses on the various tree-based machine learning models used by industry practitioners.We will also discuss k-nearest neighbors, Naive Bayes, Support Vector Machine and recommendation engine.By the end of the course, you will have mastered the required statistics for Machine Learning Algorithm and will be able to apply your new skills to any sort of industry problem. Pratap Dangeti develops machine learning and deep learning solutions for structured, image, and text data at TCS, in its research and innovation lab in Bangalore.