Goto

Collaborating Authors


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Ten Ways the Precautionary Principle Undermines Progress in Artificial Intelligence

#artificialintelligence

Artificial intelligence (AI) has the potential to deliver significant social and economic benefits, including reducing accidental deaths and injuries, making new scientific discoveries, and increasing productivity.[1] However, an increasing number of activists, scholars, and pundits see AI as inherently risky, creating substantial negative impacts such as eliminating jobs, eroding personal liberties, and reducing human intelligence.[2] Some even see AI as dehumanizing, dystopian, and a threat to humanity.[3] As such, the world is dividing into two camps regarding AI: those who support the technology and those who oppose it. Unfortunately, the latter camp is increasingly dominating AI discussions, not just in the United States, but in many nations around the world. There should be no doubt that nations that tilt toward fear rather than optimism are more likely to put in place policies and practices that limit AI development and adoption, which will hurt their economic growth, social ...


Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy

arXiv.org Artificial Intelligence

Well-designed technologies that offer high levels of human control and high levels of computer automation can increase human performance, leading to wider adoption. The Human-Centered Artificial Intelligence (HCAI) framework clarifies how to (1) design for high levels of human control and high levels of computer automation so as to increase human performance, (2) understand the situations in which full human control or full computer control are necessary, and (3) avoid the dangers of excessive human control or excessive computer control. The methods of HCAI are more likely to produce designs that are Reliable, Safe & Trustworthy (RST). Achieving these goals will dramatically increase human performance, while supporting human self-efficacy, mastery, creativity, and responsibility.


Algorithmic decision-making in AVs: Understanding ethical and technical concerns for smart cities

arXiv.org Artificial Intelligence

Autonomous Vehicles (AVs) are increasingly embraced around the world to advance smart mobility and more broadly, smart, and sustainable cities. Algorithms form the basis of decision-making in AVs, allowing them to perform driving tasks autonomously, efficiently, and more safely than human drivers and offering various economic, social, and environmental benefits. However, algorithmic decision-making in AVs can also introduce new issues that create new safety risks and perpetuate discrimination. We identify bias, ethics, and perverse incentives as key ethical issues in the AV algorithms' decision-making that can create new safety risks and discriminatory outcomes. Technical issues in the AVs' perception, decision-making and control algorithms, limitations of existing AV testing and verification methods, and cybersecurity vulnerabilities can also undermine the performance of the AV system. This article investigates the ethical and technical concerns surrounding algorithmic decision-making in AVs by exploring how driving decisions can perpetuate discrimination and create new safety risks for the public. We discuss steps taken to address these issues, highlight the existing research gaps and the need to mitigate these issues through the design of AV's algorithms and of policies and regulations to fully realise AVs' benefits for smart and sustainable cities.