Collaborating Authors

Statistical Analysis on E-Commerce Reviews, with Sentiment Classification using Bidirectional Recurrent Neural Network (RNN) Machine Learning

Understanding customer sentiments is of paramount importance in marketing strategies today. Not only will it give companies an insight as to how customers perceive their products and/or services, but it will also give them an idea on how to improve their offers. This paper attempts to understand the correlation of different variables in customer reviews on a women clothing e-commerce, and to classify each review whether it recommends the reviewed product or not and whether it consists of positive, negative, or neutral sentiment. To achieve these goals, we employed univariate and multivariate analyses on dataset features except for review titles and review texts, and we implemented a bidirectional recurrent neural network (RNN) with long-short term memory unit (LSTM) for recommendation and sentiment classification. Results have shown that a recommendation is a strong indicator of a positive sentiment score, and vice-versa. On the other hand, ratings in product reviews are fuzzy indicators of sentiment scores. We also found out that the bidirectional LSTM was able to reach an F1-score of 0.88 for recommendation classification, and 0.93 for sentiment classification.

Recommending Insurance products by using Users' Sentiments Artificial Intelligence

In today's tech-savvy world every industry is trying to formulate methods for recommending products by combining several techniques and algorithms to form a pool that would bring forward the most enhanced models for making the predictions. Building on these lines is our paper focused on the application of sentiment analysis for recommendation in the insurance domain. We tried building the following Machine Learning models namely, Logistic Regression, Multinomial Naïve Bayes, and the mighty Random Forest for analyzing the polarity of a given feedback line given by a customer. Then we used this polarity along with other attributes like Age, Gender, Locality, Income, and the list of other products already purchased by our existing customers as input for our recommendation model. Then we matched the polarity score along with the user's profiles and generated the list of insurance products to be recommended in descending order. Despite our model's simplicity and the lack of the key data sets, the results seemed very logical and realistic. So, by developing the model with more enhanced methods and with access to better and true data gathered from an insurance industry may be the sector could be very well benefitted from the amalgamation of sentiment analysis with a recommendation.

Clothes reviews analysis with NLP -- Part 1


Natural Language Processing (NPL) is a field of Artificial Intelligence whose purpose is finding computational methods to interpret human language as it is spoken or written. The idea of NLP goes beyond a mere classification task that could be carried on by ML algorithms or Deep Learning NNs. Indeed, NLP is about interpretation: you want to train your model not only to detect frequent words, but also to count them or to eliminate some noisy punctuations; you want it to tell you whether the mood of the conversation is positive or negative, whether the content of an e-mail is mere publicity or something important, whether the reviews about thriller books in last years have been good or bad. The good news is that, for NLP, we are provided with interesting libraries, available in Python, that offer a pre-trained model able to inquire about written text. Among those, I'm gonna be using Spacy and NLTK.

A Beginner's Guide to Sentiment Analysis with Python


Sentiment analysis is a technique that detects the underlying sentiment in a piece of text. It is the process of classifying text as either positive, negative, or neutral. Machine learning techniques are used to evaluate a piece of text and determine the sentiment behind it. Sentiment analysis is essential for businesses to gauge customer response. Picture this: Your company has just released a new product that is being advertised on a number of different channels.

A Comprehensive Overview of Recommender System and Sentiment Analysis Artificial Intelligence

Recommender system has been proven to be significantly crucial in many fields and is widely used by various domains. Most of the conventional recommender systems rely on the numeric rating given by a user to reflect his opinion about a consumed item; however, these ratings are not available in many domains. As a result, a new source of information represented by the user-generated reviews is incorporated in the recommendation process to compensate for the lack of these ratings. The reviews contain prosperous and numerous information related to the whole item or a specific feature that can be extracted using the sentiment analysis field. This paper gives a comprehensive overview to help researchers who aim to work with recommender system and sentiment analysis. It includes a background of the recommender system concept, including phases, approaches, and performance metrics used in recommender systems. Then, it discusses the sentiment analysis concept and highlights the main points in the sentiment analysis, including level, approaches, and focuses on aspect-based sentiment analysis.