Goto

Collaborating Authors

Investigating bankruptcy prediction models in the presence of extreme class imbalance and multiple stages of economy

arXiv.org Machine Learning

In the area of credit risk analytics, current Bankruptcy Prediction Models (BPMs) struggle with (a) the availability of comprehensive and real-world data sets and (b) the presence of extreme class imbalance in the data (i.e., very few samples for the minority class) that degrades the performance of the prediction model. Moreover, little research has compared the relative performance of well-known BPM's on public datasets addressing the class imbalance problem. In this work, we apply eight classes of well-known BPMs, as suggested by a review of decades of literature, on a new public dataset named Freddie Mac Single-Family Loan-Level Dataset with resampling (i.e., adding synthetic minority samples) of the minority class to tackle class imbalance. Additionally, we apply some recent AI techniques (e.g., tree-based ensemble techniques) that demonstrate potentially better results on models trained with resampled data. In addition, from the analysis of 19 years (1999-2017) of data, we discover that models behave differently when presented with sudden changes in the economy (e.g., a global financial crisis) resulting in abrupt fluctuations in the national default rate. In summary, this study should aid practitioners/researchers in determining the appropriate model with respect to data that contains a class imbalance and various economic stages.


Deep Learning for Financial Applications : A Survey

arXiv.org Machine Learning

Computational intelligence in finance has been a very popular topic for both academia and financial industry in the last few decades. Numerous studies have been published resulting in various models. Meanwhile, within the Machine Learning (ML) field, Deep Learning (DL) started getting a lot of attention recently, mostly due to its outperformance over the classical models. Lots of different implementations of DL exist today, and the broad interest is continuing. Finance is one particular area where DL models started getting traction, however, the playfield is wide open, a lot of research opportunities still exist. In this paper, we tried to provide a state-of-the-art snapshot of the developed DL models for financial applications, as of today. We not only categorized the works according to their intended subfield in finance but also analyzed them based on their DL models. In addition, we also aimed at identifying possible future implementations and highlighted the pathway for the ongoing research within the field.


Automating the Underwriting of Insurance Applications

AI Magazine

An end-to-end system was created at Genworth Financial to automate the underwriting of long-term care (LTC) and life insurance applications. Relying heavily on artificial intelligence techniques, the system has been in production since December 2002 and in 2004 completely automates the underwriting of 19 percent of the LTC applications. A fuzzy logic rules engine encodes the underwriter guidelines and an evolutionary algorithm optimizes the engine's performance. Finally, a natural language parser is used to improve the coverage of the underwriting system.



The rise of AI

#artificialintelligence

From virtual assistants to driverless cars, technology imitating human intelligence is on the rise. But at what ethical cost and how do boards future-proof their organisations in the face of rapid change? Earlier this year, a Japanese insurance company made headlines for doing something that company executives and directors around the world have been anticipating - and fearing - for years. Fukoku Mutual Life Insurance made 34 of its staff redundant and replaced them with artificial intelligence (AI) system IBM Watson. Japanese newspaper The Mainichi reported the company will be using Watson to determine payout amounts and check customer cases against their insurance contracts. Evidently, the future of AI is already here and technology has been changing the world at a dramatic pace.