100 artificial intelligence companies to know in healthcare 2019: Artificial intelligence and machine learning are quickly becoming an integral part of healthcare delivery.

#artificialintelligence

Artificial intelligence and machine learning are quickly becoming an integral part of healthcare delivery. Both on the clinical care and operational side of healthcare organizations, AI has is powering technology that keeps patients safe and improves efficiency for the revenue cycle, supply chain and more. Here are 100-plus companies in the healthcare space using artificial intelligence. To add a company to this list, contact Laura Dyrda at ldyrda@beckershealthcare.com. AiCure is an AI and advanced data analytics company that uses video, audio and behavioral data to better understand the connection between patients, disease and treatment. It allows physicians to have access to clinical and patient insights.



Ultra-modern medicine: Examples of machine learning in healthcare

#artificialintelligence

The healthcare sector has long been an early adopter of and benefited greatly from technological advances. These days, machine learning (a subset of artificial intelligence) plays a key role in many health-related realms, including the development of new medical procedures, the handling of patient data and records and the treatment of chronic diseases. As computer scientist Sebastian Thrum told the New Yorker in a recent article titled "A.I. Versus M.D., "Just as machines made human muscles a thousand times stronger, machines will make the human brain a thousand times more powerful." Despite warnings from some doctors that things are moving too fast, the rate of progress keeps increasing. And for many, that's as it should be. "AI is the future of healthcare," Fatima Paruk, CMO of Chicago-based Allscripts Analytics, said in 2017. She went on to explain how critical it would be in the ensuing few years and beyond -- in the care management of prevalent chronic diseases; in the leveraging of "patient-centered health data with external influences such as pollution exposure, weather factors and economic factors to generate precision medicine solutions customized to individual characteristics"; in the use of genetic information "within care management and precision medicine to uncover the best possible medical treatment plans." "AI will affect physicians and hospitals, as it will play a key role in clinical decision support, enabling earlier identification of disease, and tailored treatment plans to ensure optimal outcomes," Paruk explained. "It can also be used to demonstrate and educate patients on potential disease pathways and outcomes given different treatment options.


How Is AI Used In Healthcare - 5 Powerful Real-World Examples That Show The Latest Advances

#artificialintelligence

When it comes to our health, especially in matters of life and death, the promise of artificial intelligence (AI) to improve outcomes is very intriguing. While there is still much to overcome to achieve AI-dependent health care, most notably data privacy concerns and fears of mismanaged care due to machine error and lack of human oversight, there is sufficient potential that governments, tech companies, and healthcare providers are willing to invest and test out AI-powered tools and solutions. Here are five of the AI advances in healthcare that appear to have the most potential. With an estimated value of $40 billion to healthcare, robots can analyze data from pre-op medical records to guide a surgeon's instrument during surgery, which can lead to a 21% reduction in a patient's hospital stay. Robot-assisted surgery is considered "minimally invasive" so patients won't need to heal from large incisions.


5 Ways Machine learning is Redefining Healthcare

#artificialintelligence

Machine learning (ML) is an application of artificial intelligence (AI) wherein the system looks at observations or data, such as examples, direct experience, or instruction, figures out patterns in data and predicts events in the future based on the examples that we provide. Machine learning is seeing more and more use across industries for various reasons: vast amounts of data are being captured and made available digitally; processing of large amounts of data has become cost-effective due to the increased computing power now available at affordable prices; and various open source frameworks, toolkits and libraries are available that can be used to build and execute ML applications. Specifically in healthcare, ML has led to exciting new developments that could redefine cancer diagnosis and treatment in the years to come. ML can increase access to treatment in developing countries which don't have enough specialist doctors that can treat certain diseases, it can improve the sensitivity of detection, add more value in treatment decisions, and it can help personalize treatment so that each patient gets the treatment that's best for them. In many cases they can even add to workflow efficiency in hospitals.