Goto

Collaborating Authors

Computing for ocean environments

#artificialintelligence

There are few environments as unforgiving as the ocean. Its unpredictable weather patterns and limitations in terms of communications have left large swaths of the ocean unexplored and shrouded in mystery. "The ocean is a fascinating environment with a number of current challenges like microplastics, algae blooms, coral bleaching, and rising temperatures," says Wim van Rees, the ABS Career Development Professor at MIT. "At the same time, the ocean holds countless opportunities -- from aquaculture to energy harvesting and exploring the many ocean creatures we haven't discovered yet." Ocean engineers and mechanical engineers, like van Rees, are using advances in scientific computing to address the ocean's many challenges, and seize its opportunities. These researchers are developing technologies to better understand our oceans, and how both organisms and human-made vehicles can move within them, from the micro scale to the macro scale.


On the Verification and Validation of AI Navigation Algorithms

arXiv.org Artificial Intelligence

This paper explores the state of the art on to methods to verify and validate navigation algorithms for autonomous surface ships. We perform a systematic mapping study to find research works published in the last 10 years proposing new algorithms for autonomous navigation and collision avoidance and we have extracted what verification and validation approaches have been applied on these algorithms. We observe that most research works use simulations to validate their algorithms. However, these simulations often involve just a few scenarios designed manually. This raises the question if the algorithms have been validated properly. To remedy this, we propose the use of a systematic scenario-based testing approach to validate navigation algorithms extensively.


Differential Evolution for Efficient AUV Path Planning in Time Variant Uncertain Underwater Environment

arXiv.org Artificial Intelligence

The AUV three-dimension path planning in complex turbulent underwater environment is investigated in this research, in which static current map data and uncertain static-moving time variant obstacles are taken into account. Robustness of AUVs path planning to this strong variability is known as a complex NP-hard problem and is considered a critical issue to ensure vehicles safe deployment. Efficient evolutionary techniques have substantial potential of handling NP hard complexity of path planning problem as more powerful and fast algorithms among other approaches for mentioned problem. For the purpose of this research Differential Evolution (DE) technique is conducted to solve the AUV path planning problem in a realistic underwater environment. The path planners designed in this paper are capable of extracting feasible areas of a real map to determine the allowed spaces for deployment, where coastal area, islands, static/dynamic obstacles and ocean current is taken into account and provides the efficient path with a small computation time. The results obtained from analyze of experimental demonstrate the inherent robustness and drastic efficiency of the proposed scheme in enhancement of the vehicles path planning capability in coping undesired current, using useful current flow, and avoid colliding collision boundaries in a real-time manner. The proposed approach is also flexible and strictly respects to vehicle's kinematic constraints resisting current instabilities.


Current Advancements on Autonomous Mission Planning and Management Systems: an AUV and UAV perspective

arXiv.org Artificial Intelligence

Analyzing encircling situation is the most crucial part of autonomous adaptation. Since there are many unknown and constantly changing factors in the real environment, momentary adjustment to the consistently alternating circumstances is highly required for addressing autonomy. To respond properly to changing environment, an utterly self-ruling vehicle ought to have the capacity to realize/comprehend its particular position and the surrounding environment. However, these vehicles extremely rely on human involvement to resolve entangled missions that cannot be precisely characterized in advance, which restricts their applications and accuracy. Reducing dependence on human supervision can be achieved by improving level of autonomy. Over the previous decades, autonomy and mission planning have been extensively researched on different structures and diverse conditions; nevertheless, aiming at robust mission planning in extreme conditions, here we provide exhaustive study of UVs autonomy as well as its related properties in internal and external situation awareness. In the following discussion, different difficulties in the scope of AUVs and UAVs will be discussed.


Using AI to map marine environments

#artificialintelligence

Sonar is commonly used to map the ocean floor, and seabed composition (e.g. Salinity, depth and water temperature also affect how sound waves are propagated through water. This means that sonar measurements at different depths and distances can give accurate soundings of the ocean's properties, for example how underwater currents propagate, how the deeper ocean changes with the climate or where best to listen to whales. Working with Systems Engineering & Assessment Ltd (SEA), scientists at the University's Institute for Mathematical Innovation (IMI) have developed an Artificial Intelligence (AI) algorithm which could improve underwater mapping by making sense of incomplete data and working out how many measurements are needed to give an accurate survey. The research was part of a project contracted by The Defence and Security Accelerator (DASA), a part of the Ministry of Defence, to improve monitoring of the UK's vast marine territories using high tech sonar.