Goto

Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Deep Reinforcement Learning

arXiv.org Machine Learning

We discuss deep reinforcement learning in an overview style. We draw a big picture, filled with details. We discuss six core elements, six important mechanisms, and twelve applications, focusing on contemporary work, and in historical contexts. We start with background of artificial intelligence, machine learning, deep learning, and reinforcement learning (RL), with resources. Next we discuss RL core elements, including value function, policy, reward, model, exploration vs. exploitation, and representation. Then we discuss important mechanisms for RL, including attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn. After that, we discuss RL applications, including games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art. Finally we summarize briefly, discuss challenges and opportunities, and close with an epilogue.



Teaching Autonomous Driving Using a Modular and Integrated Approach

arXiv.org Artificial Intelligence

Autonomous driving is not one single technology but rather a complex system integrating many technologies, which means that teaching autonomous driving is a challenging task. Indeed, most existing autonomous driving classes focus on one of the technologies involved. This not only fails to provide a comprehensive coverage, but also sets a high entry barrier for students with different technology backgrounds. In this paper, we present a modular, integrated approach to teaching autonomous driving. Specifically, we organize the technologies used in autonomous driving into modules. This is described in the textbook we have developed as well as a series of multimedia online lectures designed to provide technical overview for each module. Then, once the students have understood these modules, the experimental platforms for integration we have developed allow the students to fully understand how the modules interact with each other. To verify this teaching approach, we present three case studies: an introductory class on autonomous driving for students with only a basic technology background; a new session in an existing embedded systems class to demonstrate how embedded system technologies can be applied to autonomous driving; and an industry professional training session to quickly bring up experienced engineers to work in autonomous driving. The results show that students can maintain a high interest level and make great progress by starting with familiar concepts before moving onto other modules.


Deep Learning in Computer Vision Coursera

@machinelearnbot

About this course: Deep learning added a huge boost to the already rapidly developing field of computer vision. With deep learning, a lot of new applications of computer vision techniques have been introduced and are now becoming parts of our everyday lives. These include face recognition and indexing, photo stylization or machine vision in self-driving cars. The goal of this course is to introduce students to computer vision, starting from basics and then turning to more modern deep learning models. We will cover both image and video recognition, including image classification and annotation, object recognition and image search, various object detection techniques, motion estimation, object tracking in video, human action recognition, and finally image stylization, editing and new image generation.