UNSW unlocks qubit signal frequency control in quantum advancement

ZDNet

Researchers from the University of New South Wales (UNSW) have announced a new milestone in their pursuit of creating a quantum computer chip in silicon. Working alongside experts at Indiana-based Purdue University, the researchers built two qubits; the first was an engineered molecule consisting of two phosphorus atoms with a single electron, and the other a single phosphorus atom with a single electron. UNSW said the two qubits were then placed 16 nanometres apart in a silicon chip. "By patterning a microwave antenna above the qubits with precision alignment, the qubits were exposed to frequencies of around 40GHz," the university explained. "The results showed that when changing the frequency of the signal used to control the electron spin, the single atom had a dramatically different control frequency compared to the electron spin in the molecule of two phosphorus atoms."


Scientists discover how to make quantum bits 'talk' to each other

Daily Mail - Science & tech

Australian scientists are said to have made a breakthrough in quantum computing after they were able to make two atom qubits'talk' to each other. The study, which was led by researchers from the University of New South Wales, involved creating qubits by precisely positioning individual phosphorus atoms in a silicon chip. Quantum bits, or qubits, are a unit of measure for quantum information. Once positioned, the scientists were able to get the qubits to communicate and correlate with each other. Pictured is an artist's impression of two'qubits' or quantum bits.


UNSW has found a way to access information stored within atoms

ZDNet

The University of New South Wales (UNSW) has announced the demonstration of a compact sensor for accessing information stored in the electrons of individual atoms, touted as a breakthrough that brings a scalable quantum computer in silicon one step closer. UNSW is banking on silicon being the key to building the first quantum computer and the results of the research, conducted within the Professor Michelle Simmons-led Simmons group at the Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), show how this may be achieved. Quantum bits (qubits) made from electrons hosted on single atoms in semiconductors is a promising platform for large-scale quantum computers, the university believes, and creating qubits by precisely positioning and encapsulating individual phosphorus atoms within a silicon chip is the approach Simmons' teams are taking. Read also: Australia's ambitious plan to win the quantum race However, adding in all the connections and gates required for scale up of the phosphorus atom architecture was the challenge the researchers were faced with. "To monitor even one qubit, you have to build multiple connections and gates around individual atoms, where there is not a lot of room," Simmons said.


Quantum leap from Australian research promises super-fast computing power

The Guardian

An Australian research team led by the renowned quantum physicist Prof Michelle Simmons has announced a major breakthrough in quantum computing, which researchers hope could lead to much greater computing power within a decade. Simmons, a former Australian of the Year, and her team at the University of New South Wales announced in a paper published in Nature journal on Thursday that they have been able to achieve the first two-qubit gate between atom qubits in silicon, allowing them to communicate with each other at a 200 times faster rate than previously achieved at 0.8 nanoseconds. A qubit is a quantum bit. In this design, it is built from single phosphorus atoms in silicon. In standard computing, a bit can exist in one of two states – 1 or 0. For qubits, it can be 1 or 0 or both simultaneously, which is referred to as a superposition.


Flip-flop qubits: UNSW conceives 'radical' quantum computing design

ZDNet

Engineers at the University of New South Wales (UNSW) have announced the invention of a "radical" architecture for quantum computing, essentially allowing quantum bits (qubits) -- the basic unit of information in a quantum computer -- to be placed hundreds of nanometres apart and still remain coupled. The invention is based on novel "flip-flop qubits" that UNSW said promises to make the large-scale manufacture of quantum chips dramatically cheaper and easier. To operate the flip-flop qubit, researchers need to pull the electron away from the nucleus, using the electrodes at the top; doing so creates an electric dipole. The conceptual breakthrough is the creation of an entirely new type of qubit using both the nucleus and the electron. The new chip design allows for a silicon quantum processor that can be scaled up without the precise placement of atoms required in other approaches.