Collaborating Authors

Robust Deep Graph Based Learning for Binary Classification Machine Learning

Convolutional neural network (CNN)-based feature learning has become state of the art, since given sufficient training data, CNN can significantly outperform traditional methods for various classification tasks. However, feature learning becomes more difficult if some training labels are noisy. With traditional regularization techniques, CNN often overfits to the noisy training labels, resulting in sub-par classification performance. In this paper, we propose a robust binary classifier, based on CNNs, to learn deep metric functions, which are then used to construct an optimal underlying graph structure used to clean noisy labels via graph Laplacian regularization (GLR). GLR is posed as a convex maximum a posteriori (MAP) problem solved via convex quadratic programming (QP). To penalize samples around the decision boundary, we propose two regularized loss functions for semi-supervised learning. The binary classification experiments on three datasets, varying in number and type of features, demonstrate that given a noisy training dataset, our proposed networks outperform several state-of-the-art classifiers, including label-noise robust support vector machine, CNNs with three different robust loss functions, model-based GLR, and dynamic graph CNN classifiers.

Electroencephalogram Signal Processing with Independent Component Analysis and Cognitive Stress Classification using Convolutional Neural Networks Artificial Intelligence

Electroencephalogram (EEG) is the recording which is the result due to the activity of bio-electrical signals that is acquired from electrodes placed on the scalp. In Electroencephalogram signal(EEG) recordings, the signals obtained are contaminated predominantly by the Electrooculogram(EOG) signal. Since this artifact has higher magnitude compared to EEG signals, these noise signals have to be removed in order to have a better understanding regarding the functioning of a human brain for applications such as medical diagnosis. This paper proposes an idea of using Independent Component Analysis(ICA) along with cross-correlation to de-noise EEG signal. This is done by selecting the component based on the cross-correlation coefficient with a threshold value and reducing its effect instead of zeroing it out completely, thus reducing the information loss. The results of the recorded data show that this algorithm can eliminate the EOG signal artifact with little loss in EEG data. The denoising is verified by an increase in SNR value and the decrease in cross-correlation coefficient value. The denoised signals are used to train an Artificial Neural Network(ANN) which would examine the features of the input EEG signal and predict the stress levels of the individual.

An Adaptable Framework for Deep Adversarial Label Learning from Weak Supervision Machine Learning

In this paper, we propose a general framework for using adversarial label learning (ALL) [1] for multiclass classification when the data is weakly supervised. We introduce a new variant of ALL that incorporates human knowledge through multiple constraint types. Like adversarial label learning, we learn by adversarially finding labels constrained to be partially consistent with the weak supervision. However, we describe a different approach to solve the optimization that enjoys faster convergence when training large deep models. Our framework allows for human knowledge to be encoded into the algorithm as a set of linear constraints. We then solve a two-player game optimization subject to these constraints. We test our method on three data sets by training convolutional neural network models that learn to classify image objects with limited access to training labels. Our approach is able to learn even in settings where the weak supervision confounds state-of-the-art weakly supervised learning methods. The results of our experiments demonstrate the applicability of this approach to general classification tasks.

Comparison of Decision Tree Based Classification Strategies to Detect External Chemical Stimuli from Raw and Filtered Plant Electrical Response Machine Learning

Plants monitor their surrounding environment and control their physiological functions by producing an electrical response. We recorded electrical signals from different plants by exposing them to Sodium Chloride (NaCl), Ozone (O3) and Sulfuric Acid (H2SO4) under laboratory conditions. After applying pre-processing techniques such as filtering and drift removal, we extracted few statistical features from the acquired plant electrical signals. Using these features, combined with different classification algorithms, we used a decision tree based multi-class classification strategy to identify the three different external chemical stimuli. We here present our exploration to obtain the optimum set of ranked feature and classifier combination that can separate a particular chemical stimulus from the incoming stream of plant electrical signals. The paper also reports an exhaustive comparison of similar feature based classification using the filtered and the raw plant signals, containing the high frequency stochastic part and also the low frequency trends present in it, as two different cases for feature extraction. The work, presented in this paper opens up new possibilities for using plant electrical signals to monitor and detect other environmental stimuli apart from NaCl, O3 and H2SO4 in future.

EMG Signal Classification Using Reflection Coefficients and Extreme Value Machine Artificial Intelligence

Electromyography is a promising approach to the gesture recognition of humans if an efficient classifier with high accuracy is available. In this paper, we propose to utilize Extreme Value Machine (EVM) as a high-performance algorithm for the classification of EMG signals. We employ reflection coefficients obtained from an Autoregressive (AR) model to train a set of classifiers. Our experimental results indicate that EVM has better accuracy in comparison to the conventional classifiers approved in the literature based on K-Nearest Neighbors (KNN) and Support Vector Machine (SVM).